A244164 Number of compositions of n in which the minimal multiplicity of parts equals 1.
1, 1, 3, 6, 15, 23, 53, 94, 203, 404, 855, 1648, 3416, 6662, 13400, 26406, 53038, 105306, 212051, 422162, 849267, 1696864, 3406077, 6807024, 13642099, 27268122, 54576003, 109096436, 218250874, 436243705, 872533347, 1744312748, 3488432736, 6974783481
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Nov 25 2019: (Start) The a(1) = 1 through a(5) = 15 compositions: (1) (2) (3) (4) (5) (1,2) (1,3) (1,4) (2,1) (3,1) (2,3) (1,1,2) (3,2) (1,2,1) (4,1) (2,1,1) (1,1,3) (1,2,2) (1,3,1) (2,1,2) (2,2,1) (3,1,1) (1,1,1,2) (1,1,2,1) (1,2,1,1) (2,1,1,1) (End)
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 1..2000 (first 400 terms from Alois P. Heinz)
- Vaclav Kotesovec, Graph a(n)/2^n
Crossrefs
Programs
-
Maple
b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0, add(b(n-i*j, i-1, p+j, k)/j!, j=[0, $max(1, k)..n/i]))) end: a:= n-> b(n$2, 0, 1) -b(n$2, 0, 2): seq(a(n), n=1..50);
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Min@@Length/@Split[Sort[#]]==1&]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *)
Formula
a(n) = 2^(n-1) - A240085(n). - Gus Wiseman, Nov 25 2019