cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244164 Number of compositions of n in which the minimal multiplicity of parts equals 1.

Original entry on oeis.org

1, 1, 3, 6, 15, 23, 53, 94, 203, 404, 855, 1648, 3416, 6662, 13400, 26406, 53038, 105306, 212051, 422162, 849267, 1696864, 3406077, 6807024, 13642099, 27268122, 54576003, 109096436, 218250874, 436243705, 872533347, 1744312748, 3488432736, 6974783481
Offset: 1

Views

Author

Alois P. Heinz, Jun 21 2014

Keywords

Examples

			From _Gus Wiseman_, Nov 25 2019: (Start)
The a(1) = 1 through a(5) = 15 compositions:
  (1)  (2)  (3)    (4)      (5)
            (1,2)  (1,3)    (1,4)
            (2,1)  (3,1)    (2,3)
                   (1,1,2)  (3,2)
                   (1,2,1)  (4,1)
                   (2,1,1)  (1,1,3)
                            (1,2,2)
                            (1,3,1)
                            (2,1,2)
                            (2,2,1)
                            (3,1,1)
                            (1,1,1,2)
                            (1,1,2,1)
                            (1,2,1,1)
                            (2,1,1,1)
(End)
		

Crossrefs

Column k=1 of A242451.
The complement is counted by A240085.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=[0, $max(1, k)..n/i])))
        end:
    a:= n-> b(n$2, 0, 1) -b(n$2, 0, 2):
    seq(a(n), n=1..50);
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Min@@Length/@Split[Sort[#]]==1&]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *)

Formula

a(n) = 2^(n-1) - A240085(n). - Gus Wiseman, Nov 25 2019