A244226 Length of runs in A244221 (Greedy Catalan Base, A014418, reduced modulo 2).
1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2
Offset: 0
Keywords
Examples
The first time we obtain value three at a(112) = 3, indicating that the first run of 3 in A244220 and A244221 starts at the position A244219(112) = 130, and indeed, it's the first time there are three consecutive "even" representations in Greedy Catalan Base: A014418(130) = 30020, A014418(131) = 30100, A014418(132) = 100000, A014418(133) = 100001.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..4120
Comments