cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244235 Number of Dyck paths of semilength n having exactly one occurrence of the consecutive pattern UDDU.

Original entry on oeis.org

0, 0, 0, 1, 5, 17, 54, 177, 594, 1997, 6698, 22487, 75701, 255455, 863576, 2923806, 9913448, 33658109, 114417190, 389385699, 1326522885, 4523352061, 15437800028, 52730424194, 180244620903, 616546133055, 2110330086114, 7227665869122, 24768041790134
Offset: 0

Views

Author

Alois P. Heinz, Jun 23 2014

Keywords

Examples

			a(3) = 1: UUDDUD.
a(4) = 5: UDUUDDUD, UUDDUDUD, UUDDUUDD, UUDUDDUD, UUUDDUDD.
		

Crossrefs

Column k=9 of A243827.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, binomial(n, 3),
         (2*(n-1)*(112*n^5-1220*n^4+5251*n^3-11122*n^2+11566*n-4764)*a(n-1)
         +(n-2)*(560*n^5-5820*n^4+23159*n^3-44070*n^2+40253*n-14010)*a(n-2)
         -6*(n-2)*(n-3)*(112*n^4-884*n^3+2437*n^2-2436*n+486)*a(n-3)
         +23*(n-2)*(n-3)*(n-4)*(112*n^3-492*n^2+623*n-267)*a(n-4)) /
         (n*(n-1)*(n-3)*(112*n^3-828*n^2+1943*n-1494)))
        end:
    seq(a(n), n=0..30);

Formula

a(n) ~ c * ((1+sqrt(13+16*sqrt(2)))/2)^n / sqrt(n), where c = 0.09016594515129336503624934471608236212385331150935643095582327... . - Vaclav Kotesovec, Jul 16 2014