A244235 Number of Dyck paths of semilength n having exactly one occurrence of the consecutive pattern UDDU.
0, 0, 0, 1, 5, 17, 54, 177, 594, 1997, 6698, 22487, 75701, 255455, 863576, 2923806, 9913448, 33658109, 114417190, 389385699, 1326522885, 4523352061, 15437800028, 52730424194, 180244620903, 616546133055, 2110330086114, 7227665869122, 24768041790134
Offset: 0
Keywords
Examples
a(3) = 1: UUDDUD. a(4) = 5: UDUUDDUD, UUDDUDUD, UUDDUUDD, UUDUDDUD, UUUDDUDD.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=9 of A243827.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, binomial(n, 3), (2*(n-1)*(112*n^5-1220*n^4+5251*n^3-11122*n^2+11566*n-4764)*a(n-1) +(n-2)*(560*n^5-5820*n^4+23159*n^3-44070*n^2+40253*n-14010)*a(n-2) -6*(n-2)*(n-3)*(112*n^4-884*n^3+2437*n^2-2436*n+486)*a(n-3) +23*(n-2)*(n-3)*(n-4)*(112*n^3-492*n^2+623*n-267)*a(n-4)) / (n*(n-1)*(n-3)*(112*n^3-828*n^2+1943*n-1494))) end: seq(a(n), n=0..30);
Formula
a(n) ~ c * ((1+sqrt(13+16*sqrt(2)))/2)^n / sqrt(n), where c = 0.09016594515129336503624934471608236212385331150935643095582327... . - Vaclav Kotesovec, Jul 16 2014