A244238 Decimal expansion of K = exp(8*G/(3*Pi)), a Kneser-Mahler constant related to an asymptotic inequality involving Bombieri's supremum norm, where G is Catalan's constant. K can be evaluated as Mahler's generalized height measure of the bivariate polynomial (1+x+x^2+y)^2.
2, 1, 7, 6, 0, 1, 6, 1, 3, 5, 2, 9, 2, 3, 7, 0, 4, 2, 6, 2, 3, 5, 1, 6, 0, 7, 6, 5, 7, 3, 2, 3, 2, 7, 3, 7, 1, 6, 7, 7, 3, 2, 6, 6, 1, 3, 7, 1, 5, 4, 2, 2, 2, 5, 5, 1, 6, 3, 7, 8, 9, 8, 2, 3, 2, 2, 0, 2, 2, 9, 6, 8, 2, 8, 7, 0, 1, 8, 0, 2, 6, 0, 0, 7, 6, 6, 8, 5, 5, 0, 9, 2, 8, 5, 3, 4, 2, 5, 3, 1, 1, 9
Offset: 1
Examples
2.17601613529237042623516...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.10 Kneser-Mahler polynomial constants, p. 234.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's MathWorld, Bombieri Norm
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:=RealField(); Exp(8*Catalan(R)/(3*Pi(R))); // G. C. Greubel, Aug 25 2018
-
Mathematica
RealDigits[Exp[8*Catalan/(3*Pi)], 10, 102] // First
-
PARI
default(realprecision, 100); exp(8*Catalan/(3*Pi)) \\ G. C. Greubel, Aug 25 2018