A244239 Number of partitions of n into 3 parts such that every i-th smallest part (counted with multiplicity) is different from i.
1, 3, 4, 6, 7, 9, 11, 13, 15, 18, 20, 23, 26, 29, 32, 36, 39, 43, 47, 51, 55, 60, 64, 69, 74, 79, 84, 90, 95, 101, 107, 113, 119, 126, 132, 139, 146, 153, 160, 168, 175, 183, 191, 199, 207, 216, 224, 233, 242, 251, 260, 270, 279, 289, 299, 309, 319, 330, 340
Offset: 9
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 9..1000
- N. Guru Sharan and Armin Straub, Partitions with Durfee triangles of fixed size, arXiv:2507.19047 [math.CO], 2025. See p. 5.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
Crossrefs
Column k=3 of A238406.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<14, [1, 3, 4, 6, 7][n-8], ((-4*n+56)*a(n-5) +(3*n-16)*a(n-4) +(7*n-66)*a(n-3) +(4*n-44)*a(n-2) +(28-3*n)*a(n-1)) / (7*n-78)) end: seq(a(n), n=9..80);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, Function[p, Expand[x*(p-Coefficient[p, x, i-1]*x^(i-1))]][b[n-i, i]]]]]; a[n_] := Coefficient[b[n, n], x, 3]; Table[a[n], {n, 9, 80}] (* Jean-François Alcover, May 01 2018, after Alois P. Heinz *)
Formula
From Chai Wah Wu, Apr 18 2024: (Start)
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n > 15.
G.f.: x^9*(-x^6 + 2*x^4 + x^3 - 2*x - 1)/((x - 1)^3*(x + 1)*(x^2 + x + 1)). (End)