cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244290 Smallest prime a(n) = x^2 + y^2 such that c^2 + d^2 = A002313(n) and c*x + d*y = 1, where c,d,x,y are integers.

Original entry on oeis.org

5, 2, 2, 53, 5, 173, 2, 17, 2, 29, 13, 5, 1697, 53, 2, 73, 13, 5, 37, 2, 389, 733, 2753, 89, 17, 1093, 773, 13, 397, 1789, 2, 41, 821, 53, 5, 29, 193, 281, 6257, 173, 2, 149, 593, 701, 5, 1289, 157, 5, 7993, 13, 2213, 449, 877, 2, 61, 37, 389, 17, 5, 24061
Offset: 1

Views

Author

Thomas Ordowski, Jun 27 2014

Keywords

Comments

Let c^2 + d^2 = p be a prime, A002313(n). Then x^2 + y^2 = q is the smallest prime, a(n), such that cx + dy = 1 (Bézout's identity), where c,d,x,y are integers. We have pq = m^2 + 1 at m = cy - dx.
a(n) is the smallest prime q such that q*A002313(n)-1 is a square. - Thomas Ordowski, Sep 13 2015
Conjecture: a(n) < A002313(n)^2 for n > 1. - Thomas Ordowski, Dec 28 2017

Examples

			For prime 2 = 1^2 + 1^2 is 1*2 + 1*(-1) = 1 and 2^2 + (-1)^2 = 5 is prime, so a(1) = 5. For A002313(2) = 5 is vice versa so a(2) = 2.
		

Crossrefs

Programs

  • Maple
    N:= 10^6: # to get all a(n) before the first one > N
    P:= select(isprime, [2,seq(4*i+1, i=1..floor((N-1)/4))]):
    f:= proc(p) local i;
      for i from 1 to nops(P) do
       if issqr(p*P[i]-1) then return P[i] fi
    od:
      -1
    end proc:
    for i from 1 to nops(P) do
      v:= f(P[i]);
    if v = -1 then break fi;
    A[i]:= v;
    od:
    seq(A[j],j=1..i-1); # Robert Israel, Sep 13 2015
  • PARI
    \\ cs should contain terms from A002330
    \\ ds should contain terms from A002331
    a244290(cs, ds) = {
      vector(#cs, i,
        c=cs[i]; d=ds[i]; [u,v]=gcdext(c, d);
        x=u; y=v; while(!isprime(x^2+y^2), x+=d; y-=c); e=x^2+y^2;
        x=u; y=v; while(!isprime(x^2+y^2), x-=d; y+=c); f=x^2+y^2;
        min(e, f)
      )
    } \\ Colin Barker, Jul 06 2014

Extensions

More terms from Colin Barker, Jul 06 2014