A244290 Smallest prime a(n) = x^2 + y^2 such that c^2 + d^2 = A002313(n) and c*x + d*y = 1, where c,d,x,y are integers.
5, 2, 2, 53, 5, 173, 2, 17, 2, 29, 13, 5, 1697, 53, 2, 73, 13, 5, 37, 2, 389, 733, 2753, 89, 17, 1093, 773, 13, 397, 1789, 2, 41, 821, 53, 5, 29, 193, 281, 6257, 173, 2, 149, 593, 701, 5, 1289, 157, 5, 7993, 13, 2213, 449, 877, 2, 61, 37, 389, 17, 5, 24061
Offset: 1
Keywords
Examples
For prime 2 = 1^2 + 1^2 is 1*2 + 1*(-1) = 1 and 2^2 + (-1)^2 = 5 is prime, so a(1) = 5. For A002313(2) = 5 is vice versa so a(2) = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..2910
Programs
-
Maple
N:= 10^6: # to get all a(n) before the first one > N P:= select(isprime, [2,seq(4*i+1, i=1..floor((N-1)/4))]): f:= proc(p) local i; for i from 1 to nops(P) do if issqr(p*P[i]-1) then return P[i] fi od: -1 end proc: for i from 1 to nops(P) do v:= f(P[i]); if v = -1 then break fi; A[i]:= v; od: seq(A[j],j=1..i-1); # Robert Israel, Sep 13 2015
-
PARI
\\ cs should contain terms from A002330 \\ ds should contain terms from A002331 a244290(cs, ds) = { vector(#cs, i, c=cs[i]; d=ds[i]; [u,v]=gcdext(c, d); x=u; y=v; while(!isprime(x^2+y^2), x+=d; y-=c); e=x^2+y^2; x=u; y=v; while(!isprime(x^2+y^2), x-=d; y+=c); f=x^2+y^2; min(e, f) ) } \\ Colin Barker, Jul 06 2014
Extensions
More terms from Colin Barker, Jul 06 2014
Comments