A244295 Number of standard Young tableaux with n cells such that the lengths of the first and the last row differ by 1.
2, 3, 14, 14, 69, 97, 251, 671, 1847, 2111, 12869, 33461, 58343, 189045, 841125, 2207347, 6651215, 12781755, 73096191, 308508927, 904926489, 1727792245, 7638794959, 44017642189, 177969495449, 522668483639, 1662245807549, 4496811662189, 32142974215379
Offset: 3
Keywords
Examples
a(4) = 3: [1 2] [1 3] [1 4] [3] [2] [2] [4] [4] [3]
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..400
- Wikipedia, Young tableau
Crossrefs
Column k=1 of A238707.
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) local j; `if`(n=0 or i<1, 0, `if`(l<>[] and l[1]-i=1, `if`(irem(n, i, 'j')=0, h([l[], i$j]), 0), add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))) end: a:= n-> g(n, n, []): seq(a(n), n=3..35);
-
Mathematica
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, l[[i]]}], {i, n}]]; g[n_, i_, l_] := Module[{j}, If[n == 0 || i<1, 0, If[l != {} && l[[1]]-i == 1, If[j = Quotient[n, i]; Mod[n, i] == 0, h[Join[l, Table[i, {j}]]], 0], Sum[g[n-i*j, i-1, Join[l, Table[i, {j}]]], {j, 0, n/i}]]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 3, 35}] (* Jean-François Alcover, Aug 25 2021, after Maple code *)
Comments