A244296 Number of standard Young tableaux with n cells such that the lengths of the first and the last row differ by 2.
3, 6, 35, 71, 295, 751, 2326, 6524, 22309, 55992, 190282, 577410, 1951421, 5414977, 19405654, 64615030, 238446543, 726141375, 2682369977, 9475513873, 41043824531, 138540753071, 524631248766, 1902172512592, 8404692901429, 35025078519164, 148160349275671
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..250
Crossrefs
Column k=2 of A238707.
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) local j; `if`(n=0 or i<1, 0, `if`(l<>[] and l[1]-i=2, `if`(irem(n, i, 'j')=0, h([l[], i$j]), 0), add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))) end: a:= n-> g(n, n, []): seq(a(n), n=4..35);
-
Mathematica
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, l[[i]]}], {i, n}]]; g[n_, i_, l_] := Module[{j}, If[n == 0 || i < 1, 0, If[l != {} && l[[1]] - i == 2, If[j = Quotient[n, i]; Mod[n, i] == 0, h[Join[l, Table[i, {j}]]], 0], Sum[g[n - i*j, i - 1, Join [l, Table[i, {j}]]], {j, 0, n/i}]]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 4, 35}] (* Jean-François Alcover, Aug 28 2021, after Maple code *)
Comments