A244297 Number of standard Young tableaux with n cells such that the lengths of the first and the last row differ by 3.
4, 10, 69, 195, 929, 3044, 11824, 40985, 158079, 539876, 2065087, 7272937, 27923757, 101194930, 381940222, 1429135919, 5607176733, 21323561733, 84260636527, 325309822037, 1337034045619, 5421586411034, 22509005469068, 92412147570641, 390023528935516
Offset: 5
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..150
Crossrefs
Column k=3 of A238707.
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) local j; `if`(n=0 or i<1, 0, `if`(l<>[] and l[1]-i=3, `if`(irem(n, i, 'j')=0, h([l[], i$j]), 0), add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))) end: a:= n-> g(n$2, []): seq(a(n), n=5..35);
-
Mathematica
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, [[i]]}], {i, n}]]; g[n_, i_, l_] := Module[{j}, If[n == 0 || i < 1, 0, If[l != {} && l[[1]] - i == 3, If[j = Quotient[n, i]; Mod[n, i] == 0, h[Join[l, Table[i, {j}]]], 0], Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 5, 35}] (* Jean-François Alcover, Aug 28 2021, after Maple code *)
Comments