A244298 Number of standard Young tableaux with n cells such that the lengths of the first and the last row differ by 4.
5, 15, 119, 421, 2254, 8999, 40349, 166817, 737829, 3008774, 13186593, 54944783, 238422808, 1010671048, 4395831546, 18821162274, 82799233661, 359711480525, 1599420076729, 7030074945271, 31626819884986, 141486845119777, 646988113794544, 2940338763342920
Offset: 6
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..100
Crossrefs
Column k=4 of A238707.
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) local j; `if`(n=0 or i<1, 0, `if`(l<>[] and l[1]-i=4, `if`(irem(n, i, 'j')=0, h([l[], i$j]), 0), add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))) end: a:= n-> g(n$2, []): seq(a(n), n=6..35);
-
Mathematica
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, l[[i]]}], {i, n}]]; g[n_, i_, l_] := Module[{j}, If[n == 0 || i < 1, 0, If[l != {} && l[[1]] - i == 4, If[j = Quotient[n, i]; Mod[n, i] == 0, h[Join[l, Table[i, {j}]]], 0], Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 6, 35}] (* Jean-François Alcover, Aug 28 2021, after Maple code *)
Comments