cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244305 Number of standard Young tableaux with 2n cells such that the lengths of the first and the last row differ by n.

Original entry on oeis.org

1, 0, 3, 10, 119, 791, 8823, 87515, 1042823, 12448912, 166443706, 2246438833, 32782857721, 488717384754, 7695520330054, 124248088106249, 2091672883631855, 36107381616662300, 644987804706582806, 11799406380611542654, 222235188242044718908, 4280160250751484220674
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 25 2014

Keywords

Comments

Also the number of ballot sequences of length 2n such that the multiplicities of the largest and the smallest value differ by n.

Crossrefs

Cf. A238707.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
           add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, k, l) `if`(n=0 or i<1 or `if`(l<>[], l[1], i)-1[] and l[1]-i=k, `if`(irem(n, i, 'j')=0, h([l[], i$j]),
           0), add(g(n-i*j, i-1, k, [l[], i$j]), j=0..n/i)))
        end:
    a:= n-> `if`(n=0, 1, g(2*n$2, n, [])):
    seq(a(n), n=0..25);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+
         Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, l[[i]]}], {i, n}]];
    g[n_, i_, k_, l_] := If[n == 0 || i<1 || If[l != {}, l[[1]], i]-1Jean-François Alcover, Aug 29 2021, after Maple code *)

Formula

a(n) = A238707(2n,n).