cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A244598 Integers n such that for every k > 0, n*10^k-1 has a divisor in the set { 11, 73, 101, 137 }.

Original entry on oeis.org

152206, 1522060, 4109489, 4459665, 6001522, 7761557, 9489041, 10948904, 11263317, 12633171, 15220600, 15570776, 17112633, 18872668, 20600152, 22060015, 22374428, 23744282, 26331711, 26681887, 28223744, 29983779, 31711263, 33171126, 33485539, 34855393, 37442822
Offset: 1

Views

Author

Pierre CAMI, Jul 01 2014

Keywords

Comments

For n > 8, a(n) = a(n-8) + 11111111, the first 8 values are given in the data.
If n is of the form 3*m+1 then n*10^k-1 is always divisible by 3 but also has a divisor in the set { 11, 73, 101, 137 }.

Examples

			Consider n = 152206.
If k is of the form 2*j+1, n*10^(2*j+1)-1 is divisible by 11.
If k is of the form 8*j, n*10^(8*j)-1 is divisible by 73.
If k is of the form 4*j+2, n*10^(4*j+2)-1 is divisible by 101.
If k is of the form 8*j+4, n*10^(8*j+4)-1 is divisible by 137.
This covers all k, so the covering set is { 11, 73, 101, 137 }.
		

Crossrefs

Formula

For n > 8, a(n) = a(n-8) + 11111111.

Extensions

a(9)-a(27) from Jason Yuen, Nov 10 2024
Showing 1-1 of 1 results.