A244354 Decimal expansion of 'mu', a Sobolev isoperimetric constant related to the "membrane inequality", arising from the study of a vibrating membrane that is stretched across the unit disk and fastened at its boundary.
1, 7, 2, 9, 1, 5, 0, 6, 9, 0, 3, 0, 6, 4, 4, 9, 2, 6, 9, 1, 8, 8, 6, 6, 8, 3, 4, 4, 3, 0, 1, 0, 3, 7, 1, 4, 9, 0, 2, 0, 0, 6, 7, 1, 1, 5, 9, 2, 8, 3, 9, 2, 2, 5, 6, 4, 6, 0, 6, 8, 0, 8, 4, 8, 2, 9, 4, 8, 1, 0, 6, 3, 1, 6, 3, 1, 5, 6, 3, 9, 9, 8, 8, 7, 3, 2, 4, 4, 0, 0, 9, 0, 1, 8, 3, 5, 8, 9, 5, 1, 8, 2, 2, 5
Offset: 0
Examples
0.17291506903064492691886683443...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric Constants, p. 221.
Links
- Eric Weisstein's MathWorld, Bessel Function Zeros
- Index entries for transcendental numbers
Crossrefs
Cf. A115368.
Programs
-
Mathematica
theta = BesselJZero[0, 1]; mu = 1/theta^2; RealDigits[mu, 10, 104] // First
-
PARI
1/besseljzero(0)^2 \\ Charles R Greathouse IV, Aug 23 2022
Formula
mu = 1/theta^2, where theta is A115368, the first positive zero of the Bessel function J0(x).