cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A244355 Decimal expansion of 'lambda', a Sobolev isoperimetric constant related to the "membrane inequality", arising from the study of a vibrating membrane that is stretched across the unit disk and fastened at its boundary.

Original entry on oeis.org

5, 7, 8, 3, 1, 8, 5, 9, 6, 2, 9, 4, 6, 7, 8, 4, 5, 2, 1, 1, 7, 5, 9, 9, 5, 7, 5, 8, 4, 5, 5, 8, 0, 7, 0, 3, 5, 0, 7, 1, 4, 4, 1, 8, 0, 6, 4, 2, 3, 6, 8, 5, 5, 8, 7, 0, 8, 7, 1, 2, 3, 7, 1, 4, 4, 5, 6, 0, 6, 4, 3, 0, 4, 8, 8, 5, 5, 4, 4, 3, 7, 3, 8, 8, 6, 3, 4, 0, 3, 5, 9, 5, 4, 4, 4, 9, 0, 2, 0, 4, 3, 8, 2
Offset: 1

Views

Author

Jean-François Alcover, Jun 26 2014

Keywords

Examples

			5.7831859629467845211759957584558...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric Constants, p. 221.

Crossrefs

Programs

  • Mathematica
    theta = BesselJZero[0, 1]; lambda = theta^2; RealDigits[lambda, 10, 103] // First
  • PARI
    solve(x=2, 3, besselj(0, x))^2 \\ Michel Marcus, Nov 02 2018
    
  • PARI
    besseljzero(0)^2 \\ Charles R Greathouse IV, Aug 09 2022

Formula

lambda = theta^2 where theta is A115368, the first positive zero of the Bessel function J0(x).
lambda = 1/mu = 1/A244354.
lambda is also the smallest eigenvalue of the ODE r^2*g''(r)+r*g'(r)+lambda*r^2*g(r)=0, g(0)=1, g(1)=0.

A246859 Decimal expansion of the best constant K for the integral inequality integral_{0..1} f(x)^2*f'(x)^2 dx <= K*integral_{0..1} f'(x)^4 dx.

Original entry on oeis.org

3, 4, 6, 1, 1, 8, 9, 6, 5, 6, 0, 5, 9, 3, 3, 4, 5, 0, 9, 9, 6, 0, 9, 0, 5, 4, 2, 0, 6, 8, 7, 6, 5, 9, 1, 5, 9, 8, 3, 9, 5, 2, 8, 1, 3, 8, 5, 9, 7, 4, 8, 6, 4, 0, 1, 6, 3, 8, 0, 5, 8, 7, 7, 3, 1, 1, 3, 5, 8, 2, 9, 0, 2, 6, 8, 1, 8, 2, 6, 3, 6, 4, 6, 1, 5, 2, 8, 7, 9, 5, 5, 1, 0, 8, 9, 7, 3, 4, 2, 3, 8, 6, 8, 4
Offset: 1

Views

Author

Jean-François Alcover, Sep 05 2014

Keywords

Examples

			0.34611896560593345099609054206876591598395281385974864...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric Constants.

Crossrefs

Programs

  • Mathematica
    (* Using Boyd's formula *) I0[p_, q_, r_] := Integrate[(((q - 1)*t + 1)*t^(1/p - 1))/ (((r*(q - 1))*t)/(r - q) + 1)^((r*p + p + q)/(r*p)), {t, 0, 1}]; K[p_, q_, r_] := (beta = (((r - 1)*p + (r - q))/((r - 1)*(p + q)))^(1/r); (((r - q)*p^p)*beta^(p + q - r))/(I0[p, q, r]^p*((r - 1)*(p + q)))); RealDigits[K[2, 2, 4], 10, 104] // First

Formula

24/(2*sqrt(3) + 3*sqrt(2)*arcsinh(sqrt(2)))^2.

A248914 Decimal expansion of L = Integral_{t=0..1} 1/(1-2t^2/3) dt, an auxiliary constant associated with one of the integral inequalities studied by David Boyd.

Original entry on oeis.org

1, 4, 0, 3, 8, 2, 1, 9, 6, 5, 1, 5, 5, 3, 5, 5, 1, 6, 5, 7, 3, 0, 3, 6, 3, 7, 3, 8, 8, 9, 9, 6, 1, 0, 2, 7, 7, 4, 8, 0, 0, 3, 5, 3, 2, 8, 3, 0, 6, 6, 5, 7, 0, 2, 2, 0, 7, 0, 0, 0, 4, 5, 5, 7, 2, 5, 8, 4, 8, 6, 4, 0, 8, 1, 3, 7, 8, 1, 3, 4, 8, 0, 0, 2, 3, 0, 0, 2, 9, 0, 8, 4, 7, 6, 6, 2, 7, 4, 4, 9, 2
Offset: 1

Views

Author

Jean-François Alcover, Oct 16 2014

Keywords

Examples

			1.40382196515535516573036373889961027748003532830665702207...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric Constants.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[3/2]*ArcTanh[Sqrt[2/3]], 10, 101] // First

Formula

L = sqrt(3/2)*arctanh(sqrt(2/3)).
K = A246859 = 2/(L+1)^2.
Showing 1-3 of 3 results.