A244355 Decimal expansion of 'lambda', a Sobolev isoperimetric constant related to the "membrane inequality", arising from the study of a vibrating membrane that is stretched across the unit disk and fastened at its boundary.
5, 7, 8, 3, 1, 8, 5, 9, 6, 2, 9, 4, 6, 7, 8, 4, 5, 2, 1, 1, 7, 5, 9, 9, 5, 7, 5, 8, 4, 5, 5, 8, 0, 7, 0, 3, 5, 0, 7, 1, 4, 4, 1, 8, 0, 6, 4, 2, 3, 6, 8, 5, 5, 8, 7, 0, 8, 7, 1, 2, 3, 7, 1, 4, 4, 5, 6, 0, 6, 4, 3, 0, 4, 8, 8, 5, 5, 4, 4, 3, 7, 3, 8, 8, 6, 3, 4, 0, 3, 5, 9, 5, 4, 4, 4, 9, 0, 2, 0, 4, 3, 8, 2
Offset: 1
Examples
5.7831859629467845211759957584558...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric Constants, p. 221.
Links
- Robert Stephen Jones, The fundamental Laplacian eigenvalue of the regular polygon with Dirichlet boundary conditions, arXiv:1712.06082 [math.NA], 2017, p. 17.
- Eric Weisstein's MathWorld, Bessel Function Zeros
- Index entries for transcendental numbers
Programs
-
Mathematica
theta = BesselJZero[0, 1]; lambda = theta^2; RealDigits[lambda, 10, 103] // First
-
PARI
solve(x=2, 3, besselj(0, x))^2 \\ Michel Marcus, Nov 02 2018
-
PARI
besseljzero(0)^2 \\ Charles R Greathouse IV, Aug 09 2022