A244364 a(n) is the least integer m > 1 such that n is the largest number of identical digits that can end m^k for positive integer k.
3, 4, 2, 33, 17, 319, 639, 1279, 2559, 5119, 10239, 20479, 40959, 81919, 163839, 327679, 655359, 1310719, 2621439, 5242879, 10485759, 20971519, 41943039, 83886079, 167772159, 335544319, 671088639
Offset: 1
Examples
33^k ends in 4 identical digits (let k == 187 mod 500) and never ends in more than 4 identical digits. Since this is not true for 2 <= m <= 32, a(4) = 33.
Crossrefs
Cf. A243977.
Programs
-
PARI
a(n,p)=for(c=0,10^p,st=Str(n^c);if(#st>p,jo=(eval(st)%(10^p));if(jo==1,return(c));if(ispower(jo,,&k),if(ispower(n)!=0,if(jo^(1/(ispower(jo,,&k)))==(n^(1/(ispower(n)))),return(c)));if(ispower(n)==0,if(jo==n^(ispower(jo,,&k)),return(c)))))) hup(x)={m=1;for(i=2,100,f=0;for(j=m,a(x,i),dt=(x^j)%(10^i);b="";for(w=1,i,b=concat(b,"1"));if(dt%eval(b)==0,f++;r=j;break));if(f==0,return(i-1));m=r)} n=1;while(n<100,for(x=2,10^3,if(hup(x)==n,print1(x,", ");break));n++)
Formula
Conjecture for n>5: a(n) = 10*2^(n-1)-1, k = (2r+1)*5^(n-2), r>=0. - Lars Blomberg, Jul 08 2014
Extensions
a(9)-a(27) from Lars Blomberg, Jul 08 2014
Definition and example edited by Robert Israel, Jul 10 2014
Comments