cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244393 Number of partitions of n the largest part of which, call it m, appears once, m-1 appears at most twice, m-2 appears at most thrice, etc.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 9, 13, 17, 25, 33, 45, 61, 82, 106, 142, 183, 238, 306, 395, 499, 638, 804, 1014, 1268, 1586, 1967, 2447, 3018, 3721, 4566, 5598, 6827, 8328, 10108, 12257, 14812, 17884, 21508, 25856, 30980, 37076, 44261, 52776, 62768, 74578, 88407, 104681, 123703, 146018, 172019, 202445, 237830, 279087, 326991, 382706
Offset: 0

Views

Author

David S. Newman, Jul 03 2014

Keywords

Examples

			For n=6 the partitions counted are 6, 51, 42, 411, 321, 3111
The a(9) = 17 such partitions of 9 are:
01:  [ 3 2 2 1 1 ]
02:  [ 4 2 1 1 1 ]
03:  [ 4 2 2 1 ]
04:  [ 4 3 1 1 ]
05:  [ 4 3 2 ]
06:  [ 5 1 1 1 1 ]
07:  [ 5 2 1 1 ]
08:  [ 5 2 2 ]
09:  [ 5 3 1 ]
10:  [ 5 4 ]
11:  [ 6 1 1 1 ]
12:  [ 6 2 1 ]
13:  [ 6 3 ]
14:  [ 7 1 1 ]
15:  [ 7 2 ]
16:  [ 8 1 ]
17:  [ 9 ]
		

Crossrefs

Cf. A244395.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1, `if`(t=1, 1, t+1))+add(
             b(n-i*j, i-1, t+1), j=1..min(t, n/i))))
        end:
    a:= n-> b(n$2, 1):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jul 29 2017
  • Mathematica
    nend=20;
    For[n=1,n<=nend,n++,
    count[n]=0;
    Ip=IntegerPartitions[n];
    For[i=1,i<=Length[Ip],i++,
    m=Max[Ip[[i]]];
    condition=True;
    Tip=Tally[Ip[[i]]];
    For[j=1,j<=Length[Tip],j++,
    condition=condition&&(Tip[[j]][[2]]<= m-Tip[[j]][[1]]+1)];
    If[condition,count[n]++(*;Print[Ip[[i]]]*)]];
    ]
    Table[count[i],{i,1,nend}]
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0,
         b[n, i - 1, If[t == 1, 1, t + 1]] + Sum[
         b[n - i*j, i - 1, t + 1], {j, 1, Min[t, n/i]}]]];
    a[n_] := b[n, n, 1];
    a /@ Range[0, 60] (* Jean-François Alcover, Jun 05 2021, after Alois P. Heinz *)

Extensions

More terms from Joerg Arndt, Jul 03 2014