A244393 Number of partitions of n the largest part of which, call it m, appears once, m-1 appears at most twice, m-2 appears at most thrice, etc.
1, 1, 1, 2, 3, 4, 6, 9, 13, 17, 25, 33, 45, 61, 82, 106, 142, 183, 238, 306, 395, 499, 638, 804, 1014, 1268, 1586, 1967, 2447, 3018, 3721, 4566, 5598, 6827, 8328, 10108, 12257, 14812, 17884, 21508, 25856, 30980, 37076, 44261, 52776, 62768, 74578, 88407, 104681, 123703, 146018, 172019, 202445, 237830, 279087, 326991, 382706
Offset: 0
Keywords
Examples
For n=6 the partitions counted are 6, 51, 42, 411, 321, 3111 The a(9) = 17 such partitions of 9 are: 01: [ 3 2 2 1 1 ] 02: [ 4 2 1 1 1 ] 03: [ 4 2 2 1 ] 04: [ 4 3 1 1 ] 05: [ 4 3 2 ] 06: [ 5 1 1 1 1 ] 07: [ 5 2 1 1 ] 08: [ 5 2 2 ] 09: [ 5 3 1 ] 10: [ 5 4 ] 11: [ 6 1 1 1 ] 12: [ 6 2 1 ] 13: [ 6 3 ] 14: [ 7 1 1 ] 15: [ 7 2 ] 16: [ 8 1 ] 17: [ 9 ]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A244395.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, `if`(t=1, 1, t+1))+add( b(n-i*j, i-1, t+1), j=1..min(t, n/i)))) end: a:= n-> b(n$2, 1): seq(a(n), n=0..60); # Alois P. Heinz, Jul 29 2017
-
Mathematica
nend=20; For[n=1,n<=nend,n++, count[n]=0; Ip=IntegerPartitions[n]; For[i=1,i<=Length[Ip],i++, m=Max[Ip[[i]]]; condition=True; Tip=Tally[Ip[[i]]]; For[j=1,j<=Length[Tip],j++, condition=condition&&(Tip[[j]][[2]]<= m-Tip[[j]][[1]]+1)]; If[condition,count[n]++(*;Print[Ip[[i]]]*)]]; ] Table[count[i],{i,1,nend}] (* Second program: *) b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, If[t == 1, 1, t + 1]] + Sum[ b[n - i*j, i - 1, t + 1], {j, 1, Min[t, n/i]}]]]; a[n_] := b[n, n, 1]; a /@ Range[0, 60] (* Jean-François Alcover, Jun 05 2021, after Alois P. Heinz *)
Extensions
More terms from Joerg Arndt, Jul 03 2014