A244398 Number of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) 2.
1, 2, 5, 10, 22, 45, 97, 206, 450, 982, 2178, 4849, 10904, 24630, 56010, 127911, 293546, 676156, 1563371, 3626148, 8436378, 19680276, 46026617, 107890608, 253450710, 596572386, 1406818758, 3323236237, 7862958390, 18632325318, 44214569099, 105061603968
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)* b(n-i*j, i-1, t-j, k), j=0..min(t, n/i)))) end: a:= n-> b(n-1$2, 2$2) -`if`(n=0, 0, 1): seq(a(n), n=3..40);
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]] // FullSimplify]; a[n_] := b[n-1, n-1, 2, 2] - If[n == 0, 0, 1]; Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)
Formula
a(n) ~ c * d^n / n^(3/2), where d = 2.4832535361726368... = A086317 and c = 0.7916031835775118... = A086318. - Vaclav Kotesovec, Jun 27 2014