A244406 Number of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) 10.
1, 2, 6, 17, 50, 143, 416, 1199, 3474, 10049, 29118, 84370, 244718, 710081, 2061842, 5989898, 17411214, 50634907, 147327663, 428858279, 1248914115, 3638554143, 10604615353, 30918735919, 90178253585, 263104102071, 767878267996, 2241762411780, 6546561427512
Offset: 11
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 11..750
Crossrefs
Column k=10 of A244372.
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)* b(n-i*j, i-1, t-j, k), j=0..min(t, n/i)))) end: a:= n-> b(n-1$2, 10$2) -`if`(k=0, 0, b(n-1$2, 9$2)): seq(a(n), n=11..40);
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]* b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]] // FullSimplify] ; a[n_] := b[n - 1, n - 1, 10, 10] - If[n == 0, 0, b[n - 1, n - 1, 9, 9]]; Table[a[n], {n, 11, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)