A244413 Exponent of highest power of 8 dividing n.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 1
References
- Kurt Mahler, p-adic numbers and their functions, 2nd ed., Cambridge University press, 1981.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65536
Programs
-
Mathematica
Table[IntegerExponent[n, 8], {n, 1, 100}] (* Amiram Eldar, Sep 14 2020 *)
-
PARI
A244413(n) = valuation(n,8); \\ Antti Karttunen, Oct 07 2017
-
Python
def A244413(n): return (~n&n-1).bit_length()//3 # Chai Wah Wu, Jul 09 2022
Formula
n = 8^a(n)*m with a(n) nonnegative integer such that 8 does not divide m, for n >= 1.
O.g.f.: Sum_{k>=1} x^(8^k)/(1-x^(8^k)).
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/7. - Amiram Eldar, Jan 17 2022
a(n) = floor(A007814(n)/3). - Alan Michael Gómez Calderón, Jul 25 2024
Comments