A244417 Exponents of 6 in appearing in the 6-adic value of 1/n, n>=1 (A244416).
0, 1, 1, 2, 0, 1, 0, 3, 2, 1, 0, 2, 0, 1, 1, 4, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 3, 2, 0, 1, 0, 5, 1, 1, 0, 2, 0, 1, 1, 3, 0, 1, 0, 2, 2, 1, 0, 4, 0, 1, 1, 2, 0, 3, 0, 3, 1, 1, 0, 2, 0, 1, 2, 6, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 1, 0, 4, 4, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 2, 1, 1, 0, 5, 0, 1, 2, 2
Offset: 1
Examples
See A244416.
References
- Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..19683
Crossrefs
Programs
-
Mathematica
a[n_] := Max[IntegerExponent[n, {2, 3}]]; Array[a, 100] (* Amiram Eldar, Aug 19 2024 *)
-
PARI
A244417(n) = max(valuation(n,2), valuation(n,3)); \\ Antti Karttunen, Dec 04 2018
Formula
a(n) = 0 if n is congruent 1 or 5 (mod 6). a(n) = max(A007814(n), A007949(n)) if n == 0 (mod 6). a(n) = A007814(n) if n == 2 or 4 (mod 6) and a(n) = A007949(n) if n == 3 (mod 6).
From Amiram Eldar, Aug 19 2024: (Start)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 13/10. (End)
Comments