cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244421 Denominators of coefficient triangle for expansion of x^n in terms of polynomials Todd(k,x) = T(2*k+1, sqrt(x))/sqrt(x) (A084930), with the Chebyshev T-polynomials.

Original entry on oeis.org

1, 4, 4, 8, 16, 16, 64, 64, 64, 64, 128, 64, 64, 256, 256, 512, 512, 1024, 1024, 1024, 1024, 1024, 4096, 4096, 2048, 2048, 4096, 4096, 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, 32768, 8192, 8192, 16384, 16384, 8192, 8192, 65536, 65536, 131072, 131072, 65536, 65536, 65536, 65536, 262144, 262144, 262144, 262144, 262144, 524288, 524288, 131072, 131072, 1048576, 1048576, 524288, 524288, 1048576, 1048576
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2014

Keywords

Comments

For the numerator triangle see A244420, also for comments, and the rational entries R(n,m) of the lower triangular Riordan matrix denoted in standard fashion by ((2 - c(z/4))/(1-z), -1 + c(z/4)) with c the o.g.f. of the Catalan numbers A000108.

Examples

			The triangle a(n,m) begins:
  n\m   0     1     2     3     4     5     6 ...
  0:    1
  1:    4     4
  2:    8    16    16
  3:   64    64    64    64
  4:  128    64    64   256   256
  5:  512   512  1024  1024  1024  1024
  6: 1024  4096  4096  2048  2048  4096  4096
  ...
For more rows see the link.
For the rational triangle R(n,m) see the example section of A244420.
Expansion: x^3 = (35*Todd(0, x) + 21*Todd(1, x) + 7*Todd(2, x) + 1*Todd(3, x))/64 = (35 + 21*(-3+4*x) + 7*( 5-20*x+16*x^2) + (-7+56*x-112*x^2+64*x^3))/64. For the Todd polynomials see A084930.
		

Crossrefs

Formula

a(n,m) = denominator(R(n,m)) with the rationals Riordan matrix elements R(n,m)= [x^m]R(n,x), with the row polynomials R(n,x) generated by ((2 - c(z/4))/(1-z))/(1 - x*(-1 + c(z/4))) = 2*((1+x)*(z-1) + (1-x)*sqrt(1-z))/((1-z)*((1+x)^2*z - 4*x)), where c(x) is the o.g.f. of the Catalan numbers A000108.