A273496
Triangle read by rows: coefficients in the expansion cos(x)^n = (1/2)^n * Sum_{k=0..n} T(n,k) * cos(k*x).
Original entry on oeis.org
1, 0, 2, 2, 0, 2, 0, 6, 0, 2, 6, 0, 8, 0, 2, 0, 20, 0, 10, 0, 2, 20, 0, 30, 0, 12, 0, 2, 0, 70, 0, 42, 0, 14, 0, 2, 70, 0, 112, 0, 56, 0, 16, 0, 2, 0, 252, 0, 168, 0, 72, 0, 18, 0, 2, 252, 0, 420, 0, 240, 0, 90, 0, 20, 0, 2
Offset: 0
n/k| 0 1 2 3 4 5 6
-------------------------------
0 | 1
1 | 0 2
2 | 2 0 2
3 | 0 6 0 2
4 | 6 0 8 0 2
5 | 0 20 0 10 0 2
6 | 20 0 30 0 12 0 2
-------------------------------
cos(x)^4 = (1/2)^4 (6 + 8 cos(2x) + 2 cos(4x)).
I4 = Int dx cos(x)^4 = (1/2)^4 Int dx ( 6 + 8 cos(2x) + 2 cos(4x) ) = C + 3/8 x + 1/4 sin(2x) + 1/32 sin(4x).
Over range [0,2Pi], I4 = (3/4) Pi.
Cf.
A000984,
A001790,
A046161,
A038533,
A038534,
A273506,
A273507,
A273167,
A273168,
A244420,
A244421.
-
T[MaxN_] := Function[{n}, With[
{exp = Expand[Times[ 2^n, TrigReduce[Cos[x]^n]]]},
Prepend[Coefficient[exp, Cos[# x]] & /@ Range[1, n],
exp /. {Cos[_] -> 0}]]][#] & /@ Range[0, MaxN];Flatten@T[10]
(* alternate program *)
T2[MaxN_] := Function[{n}, With[{exp = Expand[(Exp[I x] + Exp[-I x])^n]}, Prepend[2 Coefficient[exp, Exp[I # x]] & /@ Range[1, n], exp /. {Exp[] -> 0}]]][#] & /@ Range[0, MaxN]; T2[10] // ColumnForm (* _Bradley Klee, Jun 13 2016 *)
A244420
Numerators of coefficient triangle for expansion of x^n in terms of polynomials Todd(k, x) = T(2*k+1, sqrt(x))/sqrt(x) (A084930), with the Chebyshev polynomials of the first kind (type T).
Original entry on oeis.org
1, 3, 1, 5, 5, 1, 35, 21, 7, 1, 63, 21, 9, 9, 1, 231, 165, 165, 55, 11, 1, 429, 1287, 715, 143, 39, 13, 1, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 12155, 2431, 1547, 1547, 595, 85, 17, 17, 1, 46189, 37791, 12597, 6783, 2907, 969, 969, 171, 19, 1, 88179, 146965, 101745, 14535, 6783, 20349, 5985, 665, 105, 21, 1
Offset: 0
The numerator triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9
0: 1
1: 3 1
2: 5 5 1
3: 35 21 7 1
4: 63 21 9 9 1
5: 231 165 165 55 11 1
6: 429 1287 715 143 39 13 1
7: 6435 5005 3003 1365 455 105 15 1
8: 12155 2431 1547 1547 595 85 17 17 1
9: 46189 37791 12597 6783 2907 969 969 171 19 1
...
The rational triangle R(n,m) begins:
n\m 0 1 2 3 4 5
0: 1
1: 3/4 1/4
2: 5/8 5/16 1/16
3: 35/64 21/64 7/64 1/64
4: 63/128 21/64 9/64 9/256 1/256
5: 231/512 165/512 165/1024 55/1024 11/1024 1/1024
...
The next rows are:
n=6: 429/1024, 1287/4096, 715/4096, 143/2048, 39/2048, 13/4096, 1/4096,
n=7: 6435/16384, 5005/16384, 3003/16384, 1365/16384, 455/16384, 105/16384, 15/16384, 1/16384,
n=8: 12155/32768, 2431/8192, 1547/8192, 1547/16384, 595/16384, 85/8192, 17/8192, 17/65536, 1/65536,
n=9: 46189/131072, 37791/131072, 12597/65536, 6783/65536, 2907/65536, 969/65536, 969/262144, 171/262144, 19/262144, 1/262144,
...
Expansions:
x^2 = 5/8 * Todd(0,x) + 5/16 * Todd(1,x) + 1/16 * Todd(2,x) = 5/8 + (5/16)*(-3 + 4*x) +(1/16)*(5 -20*x + 16*x^2).
x^3 = (35*Todd(0, x) + 21*Todd(1, x) + 7*Todd(2, x) + 1*Todd(3, x))/64 = (35 + 21*(-3+4*x) + 7*( 5-20*x+16*x^2) + (-7+56*x-112*x^2+64*x^3))/64.
For the Todd polynomials see the coefficient table A084930.
A273167
Numerators of coefficient triangle for expansion of x^(2*n) in terms of Chebyshev polynomials of the first kind T(2*m, x) (A127674).
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 5, 15, 3, 1, 35, 7, 7, 1, 1, 63, 105, 15, 45, 5, 1, 231, 99, 495, 55, 33, 3, 1, 429, 3003, 1001, 1001, 91, 91, 7, 1, 6435, 715, 1001, 273, 455, 35, 15, 1, 1, 12155, 21879, 1989, 4641, 1071, 765, 51, 153, 9, 1, 46189, 20995, 62985, 4845, 4845, 969, 4845, 285, 95, 5, 1
Offset: 0
The triangle a(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8 9
0: 1
1: 1 1
2: 3 1 1
3: 5 15 3 1
4: 35 7 7 1 1
5: 63 105 15 45 5 1
6: 231 99 495 55 33 3 1
7: 429 3003 1001 1001 91 91 7 1
8: 6435 715 1001 273 455 35 15 1 1
9: 12155 21879 1989 4641 1071 765 51 153 9 1
...
The rational triangle R(n, m) begins:
n\m 0 1 2 3 4 5 ...
0: 1
1: 1/2 1/2
2: 3/8 1/2 1/8
3: 5/16 15/32 3/16 1/32
4: 35/128 7/16 7/32 1/16 1/128
5: 63/256 105/256 15/64 45/512 5/256 1/512
...
row 6: 231/1024 99/256 495/2048 55/512 33/1024 3/512 1/2048,
row 7: 429/2048 3003/8192 1001/4096 1001/8192 91/2048 91/8192 7/4096 1/8192,
row 8: 6435/32768 715/2048 1001/4096 273/2048 455/8192 35/2048 15/4096 1/2048 1/32768,
row 9: 12155/65536 21879/65536 1989/8192 4641/32768 1071/16384 765/32768 51/8192 153/131072 9/65536 1/131072,
...
n=3: x^6 = (5/16)*T(0, x) + (15/32)*T(2, x)
+(3/16)*T(4, x) + (1/32)*T(6,x).
cos^6(x) = (5/16) + (15/32)*cos(2*x) +
(3/16)*cos(4*x) + (1/32)*cos(6*x).
sin^6(x) = (5/16) - (15/32)*cos(2*x) +
(3/16)*cos(4*x) - (1/32)*cos(6*x).
-
T[MaxN_] := Function[{n}, With[{exp = Expand[(1/2)^(2 n) (Exp[I x] + Exp[-I x])^(2 n)]}, Prepend[ 2 Coefficient[exp, Exp[I 2 # x]] & /@ Range[1, n], exp /. {Exp[_] -> 0}]]][#] & /@ Range[0, MaxN];
T[5] // ColumnForm
T2[MaxN_] := Table[Inverse[Outer[Coefficient[#1, x, #2] &, Prepend[ChebyshevT[#, x] & /@ Range[2 MaxN], 1], Range[0, 2 MaxN]]][[n, m]], {n, 1, 2 MaxN, 2}, {m, 1, n, 2}]
T2[6] // ColumnForm (* Bradley Klee, Jun 14 2016 *)
-
a(n, m) = if (m == 0, numerator((1/2^(2*n-1)) * binomial(2*n,n)/2), numerator((1/2^(2*n-1))*binomial(2*n, n-m)));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n,k), ", ")); print()); \\ Michel Marcus, Jun 19 2016
A273171
Triangle for numerators of coefficients for integrated odd powers of cos(x) in terms sin((2*m+1)*x).
Original entry on oeis.org
1, 3, 1, 5, 5, 1, 35, 7, 7, 1, 63, 7, 9, 9, 1, 231, 55, 33, 55, 11, 1, 429, 429, 143, 143, 13, 13, 1, 6435, 5005, 3003, 195, 455, 105, 15, 1, 12155, 2431, 1547, 221, 595, 85, 17, 17, 1, 46189, 12597, 12597, 969, 323, 969, 969, 57, 19, 1, 88179, 146965, 20349, 14535, 2261, 20349, 5985, 133, 105, 21, 1
Offset: 0
The triangle a(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8 9
0: 1
1: 3 1
2: 5 5 1
3: 35 7 7 1
4: 63 7 9 9 1
5: 231 55 33 55 11 1
6: 429 429 143 143 13 13 1
7: 6435 5005 3003 195 455 105 15 1
8: 12155 2431 1547 221 595 85 17 17 1
9: 46189 12597 12597 969 323 969 969 57 19 1
...
row 10: 88179 146965 20349 14535 2261 20349 5985 133 105 21 1,
...
The rational triangle R(n, m) begins:
n\m 0 1 2 3 4 ...
0: 1/1
1: 3/4 1/12
2: 5/8 5/48 1/80
3: 35/64 7/64 7/320 1/448
4: 63/128 7/64 9/320 9/1792 1/2304
...
row 5: 231/512 55/512 33/1024 55/7168 11/9216 1/11264,
row 6: 429/1024 429/4096 143/4096 143/14336 13/6144 13/45056 1/53248,
row 7: 6435/16384 5005/49152 3003/81920 195/16384 455/147456 105/180224 15/212992 1/245760,
row 8: 12155/32768 2431/24576 1547/40960 221/16384 595/147456 85/90112 17/106496 17/983040 1/1114112,
row 9: 46189/131072 12597/131072 12597/327680 969/65536 323/65536 969/720896 969/3407872 57/1310720 19/4456448 1/4980736,
row 10: 88179/262144 146965/1572864 20349/524288 14535/917504 2261/393216 20349/11534336 5985/13631488 133/1572864 105/8912896 21/19922944 1/22020096.
...
n = 3: Int(cos^7(x), x) = (35/64)*sin(x) + (7/64)*sin(3*x) + (7/320)*sin(5*x) + (1/448)*sin(7*x). Gradstein-Rhyshik, p. 169, 2.513 16.
Int(sin^7(x), x) = -(35/64)*cos(x) + (7/64)*cos(3*x) - (7/320)*cos(5*x) + (1/448)*cos(7*x). Gradstein-Rhyshik, p. 169, 2.513 10.
- I. S. Gradstein and I. M. Ryshik, Tables of series, products , and integrals, Volume 1, Verlag Harri Deutsch, 1981, pp. 168-169, 2.513 1 and 4.
-
T[MaxN_] := Function[{n}, With[{exp = Expand[(1/2)^(2 n + 1) (Exp[I x] + Exp[-I x])^(2 n + 1)]}, 2/(2 # + 1) Coefficient[exp, Exp[I (2 # + 1) x]] & /@ Range[0, n]]][#] & /@ Range[0, MaxN];
T[5] // ColumnForm (* Bradley Klee, Jun 14 2016 *)
-
a(n, m) = numerator((1/2^(2*n))*binomial(2*n+1, n-m)/(2*m+1));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n,k), ", ")); print()); \\ Michel Marcus, Jun 19 2016
Showing 1-4 of 4 results.
Comments