cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244455 Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 1.

Original entry on oeis.org

1, 1, 3, 7, 17, 42, 105, 267, 684, 1775, 4639, 12238, 32491, 86859, 233496, 631082, 1713613, 4673455, 12795426, 35159212, 96927479, 268021520, 743188706, 2066071045, 5757360011, 16079027344, 44997313684, 126166307275, 354384737204, 997083779801, 2809751278062
Offset: 2

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 29 2014

Keywords

Examples

			a(5) = 7:
  o    o      o      o      o      o      o
  |    |      |     / \    / \     |     /|\
  o    o      o    o   o  o   o    o    o o o
  |    |     / \   |      |   |   /|\   |
  o    o    o   o  o      o   o  o o o  o
  |   / \   |      |
  o  o   o  o      o
  |
  o
		

Crossrefs

Column k=1 of A244454.
Cf. A106640 (the same for ordered rooted trees).

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
          1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
          b(n-i*j, i-1, max(0,t-j), k), j=0..n/i)))
        end:
    a:= n-> b(n-1$2, 1$2) -b(n-1$2, 2$2):
    seq(a(n), n=2..35);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 1, 1] - b[n - 1, n - 1, 2, 2]; Table[a[n], {n, 2, 35}] (* Jean-François Alcover, Feb 06 2015, after Maple *)

Formula

a(n) = A000081(n) - A001678(n+1).