A244456 Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 2.
1, 0, 1, 2, 4, 7, 15, 28, 56, 110, 220, 436, 878, 1762, 3560, 7205, 14650, 29838, 60991, 124938, 256628, 528238, 1089834, 2252860, 4666304, 9682422, 20125777, 41900433, 87369029, 182441944, 381499040, 798782945, 1674575394, 3514733683, 7385298837, 15534856067
Offset: 3
Keywords
Examples
a(5) = 1: o / \ o o / \ o o
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..900
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k], 1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)* b(n-i*j, i-1, max(0,t-j), k), j=0..n/i))) end: a:= n-> b(n-1$2, 2$2) -b(n-1$2, 3$2): seq(a(n), n=3..40);
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]]]; a[n_] := b[n - 1, n - 1, 2, 2] - b[n - 1, n - 1, 3, 3] // FullSimplify; Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
Formula
a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.18946198566085056388702757711..., c = 0.4213018528699249210965028... (constants are same as for A001679). - Vaclav Kotesovec, Jul 02 2014