A244457 Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 3.
1, 0, 0, 1, 2, 2, 4, 7, 12, 20, 34, 56, 98, 167, 284, 484, 835, 1433, 2467, 4250, 7345, 12700, 22004, 38154, 66266, 115224, 200623, 349654, 610126, 1065739, 1863547, 3261672, 5714277, 10020092, 17586014, 30890654, 54305289, 95542387, 168221056, 296401979
Offset: 4
Keywords
Examples
a(7) = 1: o /|\ o o o /|\ o o o
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k], 1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)* b(n-i*j, i-1, max(0,t-j), k), j=0..n/i))) end: a:= n-> b(n-1$2, 3$2) -b(n-1$2, 4$2): seq(a(n), n=4..45);
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 3, 3] - b[n - 1, n - 1, 4, 4]; Table[a[n], {n, 4, 45}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
Formula
a(n) ~ c * d^n / n^(3/2), where d = 1.8239199077079..., c = 0.49573400799... . - Vaclav Kotesovec, Jul 11 2014