A244458 Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 4.
1, 0, 0, 0, 1, 2, 2, 2, 4, 7, 12, 16, 25, 38, 61, 94, 147, 227, 356, 550, 862, 1345, 2113, 3299, 5168, 8091, 12721, 19981, 31421, 49384, 77761, 122487, 193151, 304623, 480852, 759367, 1200150, 1897594, 3002329, 4752436, 7527155, 11927290, 18909719, 29993579
Offset: 5
Keywords
Examples
a(9) = 1: o / ( ) \ o o o o /( )\ o o o o
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..900
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k], 1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)* b(n-i*j, i-1, max(0,t-j), k), j=0..n/i))) end: a:= n-> b(n-1$2, 4$2) -b(n-1$2, 5$2): seq(a(n), n=5..50);
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 4, 4] - b[n - 1, n - 1, 5, 5]; Table[a[n], {n, 5, 50}] (* Jean-François Alcover, Feb 06 2015, after Maple *)