A244460 Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 6.
1, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 4, 7, 12, 16, 21, 25, 34, 47, 70, 103, 147, 201, 276, 377, 527, 743, 1057, 1486, 2088, 2911, 4073, 5704, 8027, 11290, 15897, 22340, 31411, 44159, 62165, 87516, 123296, 173642, 244636, 344684, 485976, 685362, 966971, 1364301
Offset: 7
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..900
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k], 1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)* b(n-i*j, i-1, max(0,t-j), k), j=0..n/i))) end: a:= n-> b(n-1$2, 6$2) -b(n-1$2, 7$2): seq(a(n), n=7..60);
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 6, 6] - b[n - 1, n - 1, 7, 7]; Table[a[n], {n, 7, 60}] (* Jean-François Alcover, Feb 06 2015, after Maple *)