cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244466 Nonprimes n such that mu(phi(n)) = 1.

Original entry on oeis.org

1, 9, 14, 18, 22, 46, 94, 118, 166, 214, 334, 358, 422, 454, 526, 662, 694, 718, 766, 926, 934, 958, 961, 1006, 1094, 1126, 1142, 1174, 1382, 1438, 1678, 1718, 1726, 1774, 1822, 1849, 1922, 1934, 1966, 2038, 2246, 2374, 2462, 2566, 2582, 2606, 2614, 2638, 2654, 2734, 2878, 2966, 2974, 3046
Offset: 1

Views

Author

Torlach Rush, Jun 28 2014

Keywords

Comments

Odd terms > 1 are the square of some prime: a(2) = 9 = 3^2, a(23) = 961 = 31^2, a(36) = 1849 = 43^2, ... .
Odd terms > 1 are A078330^2. Even terms are 2*A088179 and 2*A078330^2. - Robert Israel, Aug 01 2014

Examples

			9 is not prime, phi(9) = 6 and mu(6) = 1, mu(phi(9)) = 1, so 9 is here.
		

Crossrefs

Programs

  • C
    a(n) {return mu(phi(n))==1 ? n : ;}
    
  • Maple
    filter:= n -> not isprime(n) and numtheory:-mobius(numtheory:-phi(n))=1:
    select(filter, [$1..10000]); # Robert Israel, Aug 01 2014
  • Mathematica
    Select[Range[3200],
    And[MoebiusMu[EulerPhi[#]] == 1,
       Not[PrimeQ[#]]] &] (* Michael De Vlieger, Aug 06 2014 *)
  • PARI
    for(n=1,10^4,if(moebius(eulerphi(n))==1,print1(n,", "))) \\ Derek Orr, Aug 01 2014
    
  • Python
    from sympy import totient,factorint,primefactors,isprime
    [n for n in range(1,10**5) if n == 1 or (not isprime(n) and max(factorint(totient(n)).values()) < 2 and (-1)**len(primefactors(totient(n))) == 1)] # Chai Wah Wu, Aug 06 2014