A244466 Nonprimes n such that mu(phi(n)) = 1.
1, 9, 14, 18, 22, 46, 94, 118, 166, 214, 334, 358, 422, 454, 526, 662, 694, 718, 766, 926, 934, 958, 961, 1006, 1094, 1126, 1142, 1174, 1382, 1438, 1678, 1718, 1726, 1774, 1822, 1849, 1922, 1934, 1966, 2038, 2246, 2374, 2462, 2566, 2582, 2606, 2614, 2638, 2654, 2734, 2878, 2966, 2974, 3046
Offset: 1
Examples
9 is not prime, phi(9) = 6 and mu(6) = 1, mu(phi(9)) = 1, so 9 is here.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11320
Programs
-
C
a(n) {return mu(phi(n))==1 ? n : ;}
-
Maple
filter:= n -> not isprime(n) and numtheory:-mobius(numtheory:-phi(n))=1: select(filter, [$1..10000]); # Robert Israel, Aug 01 2014
-
Mathematica
Select[Range[3200], And[MoebiusMu[EulerPhi[#]] == 1, Not[PrimeQ[#]]] &] (* Michael De Vlieger, Aug 06 2014 *)
-
PARI
for(n=1,10^4,if(moebius(eulerphi(n))==1,print1(n,", "))) \\ Derek Orr, Aug 01 2014
-
Python
from sympy import totient,factorint,primefactors,isprime [n for n in range(1,10**5) if n == 1 or (not isprime(n) and max(factorint(totient(n)).values()) < 2 and (-1)**len(primefactors(totient(n))) == 1)] # Chai Wah Wu, Aug 06 2014
Comments