A244474 4th-largest term in n-th row of Stern's diatomic triangle A002487.
2, 4, 10, 17, 29, 47, 79, 128, 208, 337, 546, 883, 1429, 2312, 3741, 6053, 9794, 15847, 25641, 41488, 67129, 108617
Offset: 3
Links
- Jennifer Lansing, Largest Values for the Stern Sequence, J. Integer Seqs., 17 (2014), #14.7.5.
Programs
-
Maple
A002487 := proc(n,k) option remember; if k =0 then 1; elif k = 2^n-1 then n+1 ; elif type(k,'even') then procname(n-1,k/2) ; else procname(n-1,(k-1)/2)+procname(n-1,(k+1)/2) ; end if; end proc: A244474 := proc(n) {seq(A002487(n,k),k=0..2^n-1)} ; sort(%) ; op(-4,%) ; end proc: for n from 3 do print(A244474(n)) ; od: # R. J. Mathar, Oct 25 2014
-
Mathematica
s[n_] := s[n] = Switch[n, 0, 0, 1, 1, _, If[EvenQ[n], s[n/2], s[(n - 1)/2] + s[(n - 1)/2 + 1]]]; T = Table[s[n], {n, 0, 2^25}] // Flatten // SplitBy[#, If[# == 1, 1, 0]&]& // DeleteCases[#, {1}]&; Union[#][[-4]]& /@ T[[5 ;;]] (* Jean-François Alcover, Mar 12 2023 *)
-
Python
from itertools import product from functools import reduce def A244474(n): return sorted(set(sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if y else (x[0]+x[1],x[1]),k,(1,0))) for k in product((False,True),repeat=n)),reverse=True)[3] # Chai Wah Wu, Jun 20 2022
Formula
G.f.: (-2-2*x-4*x^2-3*x^3-2*x^4-x^5-3*x^6-2*x^7-x^8-x^9-x^10)/(-1+x+x^2) (conjectured) - Jean-François Alcover, Mar 12 2023
Extensions
a(24) from Jean-François Alcover, Mar 12 2023