A244478 a(0)=2, a(1)=0, a(2)=2; thereafter a(n) = a(n-1-a(n-1))+a(n-2-a(n-2)) unless a(n-1) <= n-1 or a(n-2) <= n-2 in which case the sequence terminates.
2, 0, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 8, 8, 8, 8, 8, 8, 10, 10, 10, 12, 12, 12, 12, 14, 14, 14, 16, 16, 16, 16, 16, 16, 16, 18, 18, 18, 20, 20, 20, 20, 22, 22, 22, 24, 24, 24, 24, 24, 26, 26, 26, 28, 28, 28, 28, 30, 30, 30, 32, 32, 32, 32, 32, 32, 32, 32, 34, 34, 34, 36, 36, 36, 36, 38, 38, 38
Offset: 0
Keywords
References
- Higham, J.; Tanny, S. More well-behaved meta-Fibonacci sequences. Proceedings of the Twenty-fourth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1993). Congr. Numer. 98(1993), 3-17. See Prop. 2.1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for Hofstadter-type sequences
Programs
-
Haskell
a244478 n = a244478_list !! n a244478_list = 2 : 0 : 2 : zipWith (+) xs (tail xs) where xs = map a244478 $ zipWith (-) [1..] $ tail a244478_list -- Reinhard Zumkeller, Jul 05 2014
-
Maple
f := proc(n) option remember; if n=0 then 2 elif n=1 then 0 elif n=2 then 2 else f(n-1-f(n-1))+f(n-2-f(n-2)); fi; end proc; [seq(f(n),n=0..2000)];
-
Mathematica
f[n_] := f[n] = Switch[n, 0, 2, 1, 0, 2, 2, _, f[n-1-f[n-1]]+f[n-2-f[n-2]]]; Table[f[n], {n, 0, 100}] (* Jean-François Alcover, Oct 02 2024 *)