A244492 Triangle read by rows: T(n,k) (n>=2, 0 <= k <= n-2) = n!/(2^i*i!*k!), where k=n-2i (or 0 for entries with wrong parity).
1, 0, 3, 3, 0, 6, 0, 15, 0, 10, 15, 0, 45, 0, 15, 0, 105, 0, 105, 0, 21, 105, 0, 420, 0, 210, 0, 28, 0, 945, 0, 1260, 0, 378, 0, 36, 945, 0, 4725, 0, 3150, 0, 630, 0, 45
Offset: 0
Examples
Triangle begins: 1; 0, 3; 3, 0, 6; 0, 15, 0, 10; 15, 0, 45, 0, 15; 0, 105, 0, 105, 0, 21; 105, 0, 420, 0, 210, 0, 28; 0, 945, 0, 1260, 0, 378, 0, 36; 945, 0, 4725, 0, 3150, 0, 630, 0, 45; ...
Links
- J. East and R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359 [math.GR], 2014-2016.
Crossrefs
This is A099174 without the two rightmost diagonals.
Programs
-
Mathematica
T[n_, k_] := With[{i = (n-k)/2}, If[EvenQ[n-k], n!/(2^i i! k!), 0]]; Table[T[n, k], {n, 2, 10}, {k, 0, n-2}] // Flatten (* Jean-François Alcover, Nov 25 2018 *)