cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244495 Number of 3 X 3 matrices of nonnegative integer entries with all row and column sums <= n.

Original entry on oeis.org

1, 34, 451, 3380, 17531, 70466, 235014, 679722, 1757085, 4147792, 9084361, 18683314, 36421463, 67798940, 121239308, 209285436, 350158809, 569759574, 904194895, 1402934104, 2132700691, 3182223374, 4667981330, 6741092150, 9595505205, 13477677876, 18697927509, 25643668006, 34794756655
Offset: 0

Views

Author

N. J. A. Sloane, Jul 06 2014

Keywords

Examples

			a(1)=34:
0 1's: 1,
1 1: 9,
2 1's: 3*3*2 = 18,
3 1's: 6 (transversals),
total = 34.
		

References

  • Stanley, Richard P., Linear homogeneous Diophantine equations and magic labelings of graphs. Duke Math. J. 40 (1973), 607-632.
  • Stanley, Richard P., Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings. Duke Math. J. 43 (1976), no. 3, 511-531.

Programs

  • Magma
    [1+(25/6)*k+(3337/420)*k^2+(13777/1512)*k^3+(3289/480)*k^4+(9983/2880)*k^5+(281/240)*k^6+(73/288)*k^7+(107/3360)*k^8+(107/60480)*k^9 : k in [0..30]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    f:= k -> 1+(25/6)*k+(3337/420)*k^2+(13777/1512)*k^3+(3289/480)*k^4+(9983/2880)*k^5+(281/240)*k^6+(73/288)*k^7+(107/3360)*k^8+(107/60480)*k^9:
    seq(f(k),k=0..1000); # Robert Israel, Jul 06 2014
  • Mathematica
    CoefficientList[Series[(1 + 24*x + 156*x^2 + 280*x^3 + 156*x^4 + 24*x^5 + x^6)/(1 - x)^10, {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 06 2014 *)

Formula

G.f.: (1+24*x+156*x^2+280*x^3+156*x^4+24*x^5+x^6)/(1-x)^10.
a(k) = 1+(25/6)*k+(3337/420)*k^2+(13777/1512)*k^3+(3289/480)*k^4+(9983/2880)*k^5+(281/240)*k^6+(73/288)*k^7+(107/3360)*k^8+(107/60480)*k^9. - Robert Israel, Jul 06 2014