A244499 Decimal expansion of e/gamma, the ratio of Euler number and the Euler-Mascheroni constant.
4, 7, 0, 9, 3, 0, 0, 1, 6, 9, 3, 2, 7, 1, 0, 3, 3, 3, 0, 7, 4, 4, 1, 4, 3, 2, 1, 7, 7, 5, 4, 7, 0, 0, 4, 6, 3, 5, 1, 6, 6, 1, 6, 7, 8, 3, 2, 9, 0, 6, 4, 7, 1, 9, 6, 0, 9, 7, 8, 7, 0, 3, 8, 7, 1, 4, 8, 8, 1, 8, 3, 6, 1, 2, 4, 9, 5, 8, 1, 1, 6, 3, 1, 3, 8, 8, 5, 4, 8, 8, 1, 9, 2, 3, 6, 0, 7, 2, 0, 3, 0, 1, 7, 5, 7
Offset: 1
Examples
4.709300169327103330744143217754700463516616783290647196...
References
- Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 1.10, page 2.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2019
- Ovidiu Furdui, Problem 1764, Mathematics Magazine, Vol. 80, No. 1 (2007), pp. 77-78; Euler-Mascheroni meets e, Solution to Problem 1764 by Edward Schmeichel, ibid., Vol. 81, No. 1 (2008), p. 67.
Programs
-
Magma
R:= RealField(100); Exp(1)/EulerGamma(R); // G. C. Greubel, Aug 30 2018
-
Mathematica
RealDigits[E/EulerGamma, 10, 100][[1]] (* G. C. Greubel, Aug 30 2018 *)
-
PARI
exp(1)/Euler
Formula
Equals lim_{n->oo} (g(n)^gamma/gamma^g(n))^(2*n), where g(n) = H(n) - log(n) and H(n) = A001008(n)/A002805(n) is the n-th harmonic number (Furdui, 2007 and 2013). - Amiram Eldar, Mar 26 2022