cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244502 Number of ways to place 4 points on an n X n X n triangular grid so that no pair of them has distance sqrt(3).

Original entry on oeis.org

33, 378, 2190, 9110, 30300, 85563, 213293, 482085, 1006950, 1971185, 3655053, 6472533, 11017505, 18120840, 28919970, 44942618, 68206473, 101336700, 147703280, 211580280, 298329258, 414609113, 568614795, 770347395, 1031918240, 1367889723, 1795655703, 2335864415
Offset: 4

Views

Author

Heinrich Ludwig, Jun 29 2014

Keywords

Comments

sqrt(3) is the second closest (Euclidean) distance for a pair of points in a triangular grid. For illustration see A244500.

Crossrefs

Programs

  • Maple
    A244502:=n->`if`(n=4,33,1/384*n^8 + 1/96*n^7 - 13/64*n^6 + 5/48*n^5 + 875/128*n^4 - 2543/96*n^3 - 4141/96*n^2 + 3759/8*n - 837); seq(A244502(n), n=4..30); # Wesley Ivan Hurt, Jun 30 2014
  • Mathematica
    CoefficientList[Series[(10*x^9 - 30*x^8 + 130*x^6 - 333*x^5 + 444*x^4 - 236*x^3 + 24*x^2 - 81*x - 33)/(x - 1)^9, {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 30 2014 *)
  • PARI
    Vec(x^4*(10*x^9-30*x^8+130*x^6-333*x^5+444*x^4-236*x^3+24*x^2-81*x-33)/(x-1)^9 + O(x^100)) \\ Colin Barker, Jun 29 2014

Formula

a(n) = 1/384*n^8 + 1/96*n^7 - 13/64*n^6 + 5/48*n^5 + 875/128*n^4 - 2543/96*n^3 - 4141/96*n^2 + 3759/8*n - 837, for n >= 5.
G.f.: x^4*(10*x^9 - 30*x^8 + 130*x^6 - 333*x^5 + 444*x^4 - 236*x^3 + 24*x^2 - 81*x - 33) / (x - 1)^9. - Colin Barker, Jun 29 2014