A244502 Number of ways to place 4 points on an n X n X n triangular grid so that no pair of them has distance sqrt(3).
33, 378, 2190, 9110, 30300, 85563, 213293, 482085, 1006950, 1971185, 3655053, 6472533, 11017505, 18120840, 28919970, 44942618, 68206473, 101336700, 147703280, 211580280, 298329258, 414609113, 568614795, 770347395, 1031918240, 1367889723, 1795655703, 2335864415
Offset: 4
Links
- Heinrich Ludwig, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
Maple
A244502:=n->`if`(n=4,33,1/384*n^8 + 1/96*n^7 - 13/64*n^6 + 5/48*n^5 + 875/128*n^4 - 2543/96*n^3 - 4141/96*n^2 + 3759/8*n - 837); seq(A244502(n), n=4..30); # Wesley Ivan Hurt, Jun 30 2014
-
Mathematica
CoefficientList[Series[(10*x^9 - 30*x^8 + 130*x^6 - 333*x^5 + 444*x^4 - 236*x^3 + 24*x^2 - 81*x - 33)/(x - 1)^9, {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 30 2014 *) -
PARI
Vec(x^4*(10*x^9-30*x^8+130*x^6-333*x^5+444*x^4-236*x^3+24*x^2-81*x-33)/(x-1)^9 + O(x^100)) \\ Colin Barker, Jun 29 2014
Formula
a(n) = 1/384*n^8 + 1/96*n^7 - 13/64*n^6 + 5/48*n^5 + 875/128*n^4 - 2543/96*n^3 - 4141/96*n^2 + 3759/8*n - 837, for n >= 5.
G.f.: x^4*(10*x^9 - 30*x^8 + 130*x^6 - 333*x^5 + 444*x^4 - 236*x^3 + 24*x^2 - 81*x - 33) / (x - 1)^9. - Colin Barker, Jun 29 2014
Comments