A244504 Number of distinct lines passing through at least two points in a triangular grid of side n.
3, 9, 24, 51, 102, 177, 294, 459, 690, 987, 1380, 1875, 2508, 3279, 4212, 5319, 6648, 8199, 10026, 12141, 14580, 17343, 20496, 24051, 28068, 32547, 37542, 43071, 49218, 55983, 63456, 71661, 80658, 90447, 101100, 112635, 125160, 138675, 153252, 168915, 185784
Offset: 2
Keywords
Links
- Heinrich Ludwig, Table of n, a(n) for n = 2..1000
Crossrefs
Cf. A234248.
Programs
-
Mathematica
g[i_]:=If[i>0,i*(i+1)/2,0]; Table[3*Sum[EulerPhi[j]*(g[n-j]-g[n-2*j]),{j,1,n-1}],{n,2,50}] (* Vaclav Kotesovec, Sep 04 2014 after Jon E. Schoenfield *)
-
PARI
g(j) = if (j > 0, j*(j+1)/2, 0); a(n) = 3*sum(j = 1, n-1, eulerphi(j)*(g(n-j)-g(n-2*j))); \\ Michel Marcus, Sep 04 2014
Formula
a(n) = 3*sum(j = 1..n-1, euler_phi(j)*(g(n-j)-g(n-2*j))), where g(i) = i*(i+1)/2 if i > 0, otherwise 0, after Jon E. Schoenfield.