A244515 Number of partitions of n where the minimal multiplicity of any part is 2.
0, 1, 0, 1, 0, 2, 1, 4, 2, 6, 4, 9, 6, 16, 9, 23, 18, 34, 27, 51, 40, 75, 63, 103, 90, 152, 130, 208, 191, 286, 267, 402, 368, 546, 518, 730, 709, 998, 954, 1322, 1305, 1751, 1740, 2330, 2299, 3056, 3074, 3968, 4031, 5202, 5249, 6721, 6877, 8642, 8888, 11147, 11432, 14248, 14747, 18097, 18838, 23093, 23938, 29186, 30489
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Jul 03 2019: (Start) The a(2) = 1 through a(12) = 9 partitions are the following (empty columns not shown). The Heinz numbers of these partitions are given by A325240. 11 22 33 22111 44 33111 55 33311 66 2211 3311 2211111 3322 44111 4422 22211 4411 3311111 5511 221111 222211 221111111 33222 331111 332211 22111111 441111 2222211 33111111 2211111111 (End)
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i))) end: a:= n-> b(n$2, 2) -b(n$2, 3): seq(a(n), n=1..80);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]]; a[n_] := b[n, n, 2] - b[n, n, 3]; Array[a, 80] (* Jean-François Alcover, May 01 2018, translated from Maple *) Table[Length[Select[IntegerPartitions[n],Min@@Length/@Split[#]==2&]],{n,0,30}] (* Gus Wiseman, Jul 03 2019 *)