A244516 Number of partitions of n where the minimal multiplicity of any part is 3.
0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 2, 3, 3, 2, 7, 3, 5, 9, 8, 7, 16, 12, 17, 23, 23, 25, 42, 33, 43, 59, 61, 59, 95, 85, 104, 128, 137, 148, 207, 189, 233, 283, 307, 320, 430, 424, 498, 584, 634, 686, 872, 864, 1011, 1177, 1280, 1365, 1687, 1736, 1987, 2258, 2470, 2674, 3208, 3303, 3767, 4277, 4658, 5014, 5916, 6201
Offset: 1
Keywords
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i))) end: a:= n-> b(n$2, 3) -b(n$2, 4): seq(a(n), n=1..80);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]]; a[n_] := b[n, n, 3] - b[n, n, 4]; Array[a, 80] (* Jean-François Alcover, May 01 2018, translated from Maple *)
Comments