A244518 Number of partitions of n where the minimal multiplicity of any part is 5.
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 2, 1, 2, 3, 3, 2, 4, 2, 6, 4, 5, 4, 7, 7, 8, 8, 10, 11, 18, 13, 19, 19, 22, 29, 32, 29, 37, 37, 53, 48, 60, 54, 68, 79, 84, 86, 104, 99, 133, 125, 149, 151, 183, 191, 219, 223, 259, 268, 335, 320, 377, 391, 448, 487, 547, 552, 640, 666, 781, 795, 908, 923, 1057, 1139, 1246, 1312, 1472, 1508, 1754
Offset: 1
Keywords
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i))) end: a:= n-> b(n$2, 5) -b(n$2, 6): seq(a(n), n=1..100);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]]; a[n_] := b[n, n, 5] - b[n, n, 6]; Array[a, 100] (* Jean-François Alcover, May 01 2018, translated from Maple *)
Comments