A244532 Number of ordered unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 3.
1, 0, 0, 3, 7, 8, 21, 55, 121, 265, 611, 1379, 3193, 7436, 17085, 39339, 91846, 214549, 500132, 1169267, 2743302, 6445797, 15167805, 35749961, 84390645, 199523566, 472429633, 1120012481, 2658525869, 6318368820, 15034189965, 35811690663, 85393261630
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
- Vaclav Kotesovec, Recurrence (of order 9)
Programs
-
Maple
b:= proc(n, t, k) option remember; `if`(n=0, `if`(t in [0, k], 1, 0), `if`(t>n, 0, add(b(j-1, k$2)* b(n-j, max(0, t-1), k), j=1..n))) end: a:= n-> b(n-1, 3$2) -b(n-1, 4$2): seq(a(n), n=4..40);
-
Mathematica
b[n_, t_, k_] := b[n, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[t > n, 0, Sum[b[j - 1, k, k]*b[n - j, Max[0, t - 1], k], {j, 1, n}]]]; T[n_, k_] := b[n - 1, k, k] - If[n == 1 && k == 0, 0, b[n - 1, k + 1, k + 1]]; a[n_] := b[n - 1, 3, 3] - b[n - 1, 4, 4]; Table[a[n], {n, 4, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
Formula
a(n) ~ sqrt(sqrt(2)/4 - sqrt(154+112*sqrt(2))/56) * ((sqrt(13+16*sqrt(2))-1)/2)^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 02 2014