cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244533 Number of ordered unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 4.

Original entry on oeis.org

1, 0, 0, 0, 4, 9, 10, 11, 34, 91, 196, 330, 636, 1377, 2976, 6061, 12199, 25186, 52767, 109066, 224964, 467605, 979056, 2042847, 4244986, 8844130, 18527956, 38878929, 81460220, 170576593, 357894472, 752544917, 1583579674, 3332453026, 7016669752, 14790212086
Offset: 5

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 29 2014

Keywords

Crossrefs

Column k=4 of A244530.
Cf. A244458.

Programs

  • Maple
    b:= proc(n, t, k) option remember; `if`(n=0,
          `if`(t in [0, k], 1, 0), `if`(t>n, 0, add(b(j-1, k$2)*
           b(n-j, max(0, t-1), k), j=1..n)))
        end:
    a:= n-> b(n-1, 4$2) -b(n-1, 5$2):
    seq(a(n), n=5..45);
  • Mathematica
    b[n_, t_, k_] := b[n, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[t > n, 0, Sum[b[j - 1, k, k]*b[n - j, Max[0, t - 1], k], {j, 1, n}]]]; T[n_, k_] := b[n - 1, k, k] - If[n == 1 && k == 0, 0, b[n - 1, k + 1, k + 1]]; a[n_] := b[n - 1, 4, 4] - b[n - 1, 5, 5]; Table[a[n], {n, 5, 45}] (* Jean-François Alcover, Feb 06 2015, after Maple *)

Formula

a(n) ~ c * d^n / (sqrt(Pi) * n^(3/2)), where d = 2.18452974131524781307797151868229485574758... is the root of the equation -229 - 36*d + 2*d^2 - 32*d^3 + 19*d^4 + 4*d^5 = 0, and c = 0.181069926661856899940163775713243367029404419526724... . - Vaclav Kotesovec, Jul 02 2014