A244533 Number of ordered unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 4.
1, 0, 0, 0, 4, 9, 10, 11, 34, 91, 196, 330, 636, 1377, 2976, 6061, 12199, 25186, 52767, 109066, 224964, 467605, 979056, 2042847, 4244986, 8844130, 18527956, 38878929, 81460220, 170576593, 357894472, 752544917, 1583579674, 3332453026, 7016669752, 14790212086
Offset: 5
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..1000
- Vaclav Kotesovec, Recurrence (of order 11)
Programs
-
Maple
b:= proc(n, t, k) option remember; `if`(n=0, `if`(t in [0, k], 1, 0), `if`(t>n, 0, add(b(j-1, k$2)* b(n-j, max(0, t-1), k), j=1..n))) end: a:= n-> b(n-1, 4$2) -b(n-1, 5$2): seq(a(n), n=5..45);
-
Mathematica
b[n_, t_, k_] := b[n, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[t > n, 0, Sum[b[j - 1, k, k]*b[n - j, Max[0, t - 1], k], {j, 1, n}]]]; T[n_, k_] := b[n - 1, k, k] - If[n == 1 && k == 0, 0, b[n - 1, k + 1, k + 1]]; a[n_] := b[n - 1, 4, 4] - b[n - 1, 5, 5]; Table[a[n], {n, 5, 45}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
Formula
a(n) ~ c * d^n / (sqrt(Pi) * n^(3/2)), where d = 2.18452974131524781307797151868229485574758... is the root of the equation -229 - 36*d + 2*d^2 - 32*d^3 + 19*d^4 + 4*d^5 = 0, and c = 0.181069926661856899940163775713243367029404419526724... . - Vaclav Kotesovec, Jul 02 2014