A244534 Number of ordered unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 5.
1, 0, 0, 0, 0, 5, 11, 12, 13, 14, 50, 136, 289, 477, 703, 1255, 2611, 5489, 10902, 19712, 35455, 66651, 130014, 254737, 488041, 920461, 1741642, 3338360, 6453073, 12425997, 23780944, 45451155, 87224392, 168253246, 324863578, 625728091, 1202953325, 2314485753
Offset: 6
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..1000
Programs
-
Maple
b:= proc(n, t, k) option remember; `if`(n=0, `if`(t in [0, k], 1, 0), `if`(t>n, 0, add(b(j-1, k$2)* b(n-j, max(0, t-1), k), j=1..n))) end: a:= n-> b(n-1, 5$2) -b(n-1, 6$2): seq(a(n), n=6..50);
-
Mathematica
b[n_, t_, k_] := b[n, t, k] = If[n == 0, If[MemberQ[{0, k}, t], 1, 0], If[t > n, 0, Sum[b[j-1, k, k]* b[n-j, Max[0, t-1], k], {j, n}]]]; a[n_] := b[n-1, 5, 5] - b[n-1, 6, 6]; Table[a[n], {n, 6, 50}] (* Jean-François Alcover, Aug 28 2021, after Maple code *)