A244542 Palindromes n such that n +/- the product of digits of n are both palindromes.
1, 2, 3, 4, 101, 202, 252, 303, 404, 505, 606, 707, 808, 909, 1001, 2002, 3003, 4004, 5005, 6006, 7007, 8008, 9009, 10001, 10101, 10201, 10301, 10401, 10501, 10601, 10701, 10801, 10901, 11011, 12021, 13031, 14041, 15051, 15451, 16061, 17071, 18081, 19091, 20002, 20102, 20202
Offset: 1
Examples
101 - 1*0*1 and 101 + 1*0*1 are both palindromes (still 101). So 101 is a member of this sequence.
Programs
-
Mathematica
Select[Range[30000],AllTrue[#+{0,Times@@IntegerDigits[#],-Times@@IntegerDigits[#]},PalindromeQ]&] (* Harvey P. Dale, Aug 14 2025 *)
-
PARI
rev(n)={r="";for(i=1,#digits(n),r=concat(Str(digits(n)[i]),r));return(eval(r))} for(n=1,10^5,if(rev(n)==n,dig=digits(n);p=prod(k=1,#dig,dig[k]);mi=n-p;ma=n+p;if(rev(mi)==mi&&rev(ma)==ma,print1(n,", "))))
Comments