A244544 Expansion of (phi(q) + phi(q^2))^2 / 4 in powers of q where phi() is a Ramanujan theta function.
1, 2, 3, 2, 3, 2, 2, 0, 3, 4, 4, 2, 2, 2, 0, 0, 3, 4, 5, 2, 4, 0, 2, 0, 2, 4, 4, 4, 0, 2, 0, 0, 3, 4, 6, 0, 5, 2, 2, 0, 4, 4, 0, 2, 2, 2, 0, 0, 2, 2, 7, 4, 4, 2, 4, 0, 0, 4, 4, 2, 0, 2, 0, 0, 3, 4, 4, 2, 6, 0, 0, 0, 5, 4, 4, 2, 2, 0, 0, 0, 4, 6, 6, 2, 0, 4, 2
Offset: 0
Keywords
Examples
G.f. = 1 + 2*q + 3*q^2 + 2*q^3 + 3*q^4 + 2*q^5 + 2*q^6 + 3*q^8 + 4*q^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Magma
A := Basis( ModularForms( Gamma1(8), 1), 33); A[1] + 2*A[2] + 3*A[3];
-
Mathematica
a[ n_] := If[ n < 1, Boole[n == 0], Sum[ {2, 1, 0, 0, 0, -1, -2, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]]; a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^2])^2 / 4, {q, 0, n}];
-
PARI
{a(n) = if( n<1, n==0, sumdiv(n, d, [0, 2, 1, 0, 0, 0, -1, -2][d%8 + 1]))};
-
PARI
{a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( (A + subst(A, x, x^2))^2 / 4, n))};
-
Sage
A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[0] + 2*A[1] + 3*A[2];
Formula
Expansion of f(-q^3, -q^5)^4 / psi(-q)^2 in powers of q where phi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [ 2, 0, -2, 2, -2, 0, 2, -2, ...].
Moebius transform is period 8 sequence [ 2, 1, 0, 0, 0, -1, -2, 0, ...].
Convolution square of A093709.
Comments