A244554 Expansion of phi(q) * (phi(q) - phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.
1, 1, -2, 1, 4, -2, 0, 1, -1, 4, -2, -2, 4, 0, 0, 1, 2, -1, -2, 4, 0, -2, 0, -2, 5, 4, -4, 0, 4, 0, 0, 1, -4, 2, 0, -1, 4, -2, 0, 4, 2, 0, -2, -2, 4, 0, 0, -2, 1, 5, -4, 4, 4, -4, 0, 0, -4, 4, -2, 0, 4, 0, 0, 1, 8, -4, -2, 2, 0, 0, 0, -1, 2, 4, -2, -2, 0, 0
Offset: 1
Keywords
Examples
G.f. = q + q^2 - 2*q^3 + q^4 + 4*q^5 - 2*q^6 + q^8 - q^9 + 4*q^10 - 2*q^11 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2500
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Crossrefs
Programs
-
Magma
A := Basis( ModularForms( Gamma1(8), 1), 33); A[2] + A[3];
-
Mathematica
a[ n_] := If[ n < 1, 0, Sum[ {1, 0, -3, 0, 3, 0, -1, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]]; a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];
-
PARI
{a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, 0, -3, 0, 3, 0, -1][d%8 + 1]))};
-
PARI
{a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A * (A - subst(A, x, x^2)) / 2, n))};
-
Sage
A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[1] + A[2];
Formula
Expansion of q * f(-q, -q^7)^2 * phi(q) / psi(-q) = q * f(-q, -q^7)^2 * chi(q)^3 in powers of q where phi(), psi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [1, -3, 3, 0, 3, -3, 1, -2, ...].
Moebius transform is period 8 sequence [1, 0, -3, 0, 3, 0, -1, 0, ...].
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi*(1 - 1/sqrt(2))/2 = 0.460075... . - Amiram Eldar, Jun 08 2025
Comments