cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A244554 Expansion of phi(q) * (phi(q) - phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, -2, 1, 4, -2, 0, 1, -1, 4, -2, -2, 4, 0, 0, 1, 2, -1, -2, 4, 0, -2, 0, -2, 5, 4, -4, 0, 4, 0, 0, 1, -4, 2, 0, -1, 4, -2, 0, 4, 2, 0, -2, -2, 4, 0, 0, -2, 1, 5, -4, 4, 4, -4, 0, 0, -4, 4, -2, 0, 4, 0, 0, 1, 8, -4, -2, 2, 0, 0, 0, -1, 2, 4, -2, -2, 0, 0
Offset: 1

Views

Author

Michael Somos, Jun 30 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 - 2*q^3 + q^4 + 4*q^5 - 2*q^6 + q^8 - q^9 + 4*q^10 - 2*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 33); A[2] + A[3];
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ {1, 0, -3, 0, 3, 0, -1, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, 0, -3, 0, 3, 0, -1][d%8 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A * (A - subst(A, x, x^2)) / 2, n))};
    
  • Sage
    A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[1] + A[2];
    

Formula

Expansion of q * f(-q, -q^7)^2 * phi(q) / psi(-q) = q * f(-q, -q^7)^2 * chi(q)^3 in powers of q where phi(), psi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [1, -3, 3, 0, 3, -3, 1, -2, ...].
Moebius transform is period 8 sequence [1, 0, -3, 0, 3, 0, -1, 0, ...].
Convolution product of A244560 and A107635. Convolution product of A000122 and A143259.
a(n) = (A004018(n) - A033715(n)) / 2 = A243747(2*n).
a(2*n) = a(n). a(8*n + 3) = -2 * A033761(n). a(8*n + 5) = 4 * A053692(n). a(8*n + 7) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi*(1 - 1/sqrt(2))/2 = 0.460075... . - Amiram Eldar, Jun 08 2025
Showing 1-1 of 1 results.