A244551 Numbers k such that k +- (sum of digits of k) are both palindromes.
1, 2, 3, 4, 10, 100, 105, 181, 262, 267, 343, 348, 424, 429, 681, 762, 767, 843, 848, 924, 929, 1000, 10000, 100000, 1000000, 10000000, 63999991, 72999982, 81999973, 90999964, 100000000, 1000000000, 10000000000, 100000000000, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 10000000000000000
Offset: 1
Examples
267 - (2+6+7) = 252 is a palindrome and 267 + (2+6+7) = 282 is also a palindrome. Thus 252 is a member of this sequence.
Links
- Derek Orr, More terms in the sequence
Programs
-
PARI
rev(n)={r="";for(i=1,#digits(n),r=concat(Str(digits(n)[i]),r));return(eval(r))} for(n=1,10^7,dig=digits(n);s=sum(k=1,#dig,dig[k]);sm=n-s;la=n+s;if(rev(sm)==sm&&rev(la)==la,print1(n,", ")))
-
Python
def palgen(l,b=10): # generator of palindromes in base b of length <= 2*l if l > 0: yield 0 for x in range(1,l+1): n = b**(x-1) n2 = n*b for y in range(n,n2): k, m = y//b, 0 while k >= b: k, r = divmod(k,b) m = b*m + r yield y*n + b*m + k for y in range(n,n2): k, m = y, 0 while k >= b: k, r = divmod(k,b) m = b*m + r yield y*n2 + b*m + k A244551_list = [] for p in palgen(9): l = len(str(p)) for i in range(1,l*9+1): n = p-i if n > 0: if sum((int(d) for d in str(n))) == i: s = str(n-i) if s == s[::-1]: A244551_list.append(n) # Chai Wah Wu, Aug 24 2015
Extensions
a(27)-a(32) from Michel Marcus, Jun 30 2014
a(33)-a(39) from Chai Wah Wu, Aug 24 2015
Comments