A244583 a(n) = sum of all divisors of all positive integers <= prime(n).
4, 8, 21, 41, 99, 141, 238, 297, 431, 690, 794, 1136, 1384, 1524, 1806, 2304, 2846, 3076, 3699, 4137, 4406, 5128, 5645, 6499, 7755, 8401, 8721, 9393, 9783, 10513, 13280, 14095, 15443, 15871, 18232, 18756, 20320, 21873, 22875, 24604, 26274, 27002, 29982, 30684
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
a244583[n_] := Sum[DivisorSigma[1, i], {i, #}] & /@ Prime[Range@n]; a244583[44] (* Michael De Vlieger, Jan 06 2015 *)
-
PARI
a(n) = sum(i=1, prime(n), sigma(i)); \\ Michel Marcus, Sep 29 2014
-
Python
from math import isqrt from sympy import prime def A244583(n): return -(s:=isqrt(p:=prime(n)))**2*(s+1) + sum((q:=p//k)*((k<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 23 2023
Formula
Extensions
More terms from Michel Marcus, Sep 29 2014
Comments