cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244583 a(n) = sum of all divisors of all positive integers <= prime(n).

Original entry on oeis.org

4, 8, 21, 41, 99, 141, 238, 297, 431, 690, 794, 1136, 1384, 1524, 1806, 2304, 2846, 3076, 3699, 4137, 4406, 5128, 5645, 6499, 7755, 8401, 8721, 9393, 9783, 10513, 13280, 14095, 15443, 15871, 18232, 18756, 20320, 21873, 22875, 24604, 26274, 27002, 29982, 30684
Offset: 1

Views

Author

Omar E. Pol, Jun 30 2014

Keywords

Comments

Limit_{n->oo} a(n)/prime(n)^2 = zeta(2)/2 = Pi^2/12 = A072691 = 0.82246703342.... For example, at n = 2*10^6, the ratio converges to 0.822467033... (+-2 in the last digit with increments on n of +100). If the ratio is calculated with a nonprime for the upper summation limit then the ratio runs slightly larger and converges slower. See formula section of A024916 for the general case. - Richard R. Forberg, Jan 04 2015
This is a subsequence of A024916 therefore a(n) also has a symmetric representation. For more information see A236104, A237593. - Omar E. Pol, Jan 05 2015

Crossrefs

Programs

  • Mathematica
    a244583[n_] := Sum[DivisorSigma[1, i], {i, #}] & /@ Prime[Range@n]; a244583[44] (* Michael De Vlieger, Jan 06 2015 *)
  • PARI
    a(n) = sum(i=1, prime(n), sigma(i)); \\ Michel Marcus, Sep 29 2014
    
  • Python
    from math import isqrt
    from sympy import prime
    def A244583(n): return -(s:=isqrt(p:=prime(n)))**2*(s+1) + sum((q:=p//k)*((k<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 23 2023

Formula

a(n) = A024916(A000040(n)).
a(n) = A001248(n) - A050482(n). - Omar E. Pol, Jan 05 2015

Extensions

More terms from Michel Marcus, Sep 29 2014