cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244609 Least prime divisor of 659*2^n-1.

Original entry on oeis.org

2, 3, 5, 3, 13, 3, 5, 3, 73, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 977, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 31, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 73, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 13477, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 48430237, 3, 5, 3, 7, 3, 5, 3, 13
Offset: 0

Views

Author

Robert Israel, Jul 01 2014

Keywords

Comments

a(n) = 3 if n is odd.
a(n) = 5 if n == 2 (mod 4).
From Bruno Berselli, Jul 02 2014: (Start)
a(n) = 7 if n == 0 (mod 12) for n>0.
a(n) = 13 if n == 4 (mod 12).
a(n) == 3 or 7 (mod 12) for n>1. (End)
A040081(659) = 800516, so 800516 is the first n for which a(n) = 659*2^n-1 (found by David W Linton in 2004). - Jens Kruse Andersen, Jul 02 2014

Examples

			For n=4, 659*2^4-1 = 10543 = 13 * 811 so a(4) = 13.
		

Crossrefs

Programs

  • Magma
    [PrimeDivisors(659*2^n-1)[1]: n in [0..100]]; // Bruno Berselli, Jul 02 2014
  • Maple
    f:= proc(m) local F;
       F:= map(t -> t[1],ifactors(659*2^m-1,easy)[2]);
       F:= select(type,F,integer);
       if nops(F) = 0 then
         F:= map(t -> t[1],ifactors(659*2^m-1)[2]);
         min(F);
       else min(F)
       fi
    end proc;
    seq(f(n), n= 0 .. 100);