cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244619 Decimal expansion of 'theta', the unique positive root of the equation polygamma(x) = log(Pi), where polygamma(x) gives gamma'(x)/gamma(x), that is the logarithmic derivative of the gamma function.

Original entry on oeis.org

3, 6, 2, 8, 4, 7, 3, 2, 0, 2, 4, 3, 0, 2, 8, 8, 3, 9, 0, 0, 6, 6, 4, 1, 9, 1, 9, 4, 3, 4, 5, 3, 8, 4, 6, 1, 8, 3, 0, 9, 5, 0, 8, 6, 1, 8, 5, 9, 1, 6, 0, 7, 4, 2, 8, 7, 5, 4, 9, 3, 9, 8, 3, 9, 3, 8, 8, 5, 5, 4, 6, 7, 3, 3, 6, 8, 4, 1, 0, 1, 3, 6, 4, 0, 8, 8, 6, 0, 1, 1, 9, 2, 4, 4, 8, 9, 6, 2, 3, 4, 6, 3, 4, 7, 8
Offset: 1

Views

Author

Jean-François Alcover, Jul 02 2014

Keywords

Comments

This constant appears in d_a = 2*theta = 7.2569464... and d_v = 2*(theta-1) = 5.2569464..., the fractional dimensions at which d-dimensional spherical surface area and volume, respectively, are maximized. [after Steven Finch]

Examples

			3.6284732024302883900664191943453846183...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.5.4 Gamma Function, p. 34.

Crossrefs

Programs

  • Mathematica
    theta = x /. FindRoot[PolyGamma[x] == Log[Pi], {x, 4}, WorkingPrecision -> 105]; RealDigits[theta] // First
  • PARI
    polygamma(n, x) = if (n == 0, psi(x), (-1)^(n+1)*n!*zetahurwitz(n+1, x));
    solve(x=3.5, 3.7, polygamma(0, x) - log(Pi)) \\ Gheorghe Coserea, Sep 30 2018