A244619 Decimal expansion of 'theta', the unique positive root of the equation polygamma(x) = log(Pi), where polygamma(x) gives gamma'(x)/gamma(x), that is the logarithmic derivative of the gamma function.
3, 6, 2, 8, 4, 7, 3, 2, 0, 2, 4, 3, 0, 2, 8, 8, 3, 9, 0, 0, 6, 6, 4, 1, 9, 1, 9, 4, 3, 4, 5, 3, 8, 4, 6, 1, 8, 3, 0, 9, 5, 0, 8, 6, 1, 8, 5, 9, 1, 6, 0, 7, 4, 2, 8, 7, 5, 4, 9, 3, 9, 8, 3, 9, 3, 8, 8, 5, 5, 4, 6, 7, 3, 3, 6, 8, 4, 1, 0, 1, 3, 6, 4, 0, 8, 8, 6, 0, 1, 1, 9, 2, 4, 4, 8, 9, 6, 2, 3, 4, 6, 3, 4, 7, 8
Offset: 1
Examples
3.6284732024302883900664191943453846183...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.5.4 Gamma Function, p. 34.
Programs
-
Mathematica
theta = x /. FindRoot[PolyGamma[x] == Log[Pi], {x, 4}, WorkingPrecision -> 105]; RealDigits[theta] // First
-
PARI
polygamma(n, x) = if (n == 0, psi(x), (-1)^(n+1)*n!*zetahurwitz(n+1, x)); solve(x=3.5, 3.7, polygamma(0, x) - log(Pi)) \\ Gheorghe Coserea, Sep 30 2018
Comments