A244639 Decimal expansion of the sum of the reciprocals of the heptagonal numbers (A000566).
1, 3, 2, 2, 7, 7, 9, 2, 5, 3, 1, 2, 2, 3, 8, 8, 8, 5, 6, 7, 4, 9, 4, 4, 2, 2, 6, 1, 3, 1, 0, 0, 8, 4, 0, 1, 6, 5, 2, 2, 8, 0, 1, 1, 7, 3, 7, 1, 3, 9, 2, 4, 3, 7, 2, 2, 8, 5, 4, 5, 7, 6, 2, 6, 8, 8, 5, 1, 6, 2, 2, 1, 0, 7, 6, 8, 5, 8, 4, 4, 7, 5, 3, 5, 6, 8, 0, 9, 0, 8, 6, 0, 4, 1, 2, 4, 4, 7, 1, 1, 9, 3, 2, 0, 9
Offset: 1
Examples
1.32277925312238885674944226131008401652280117371392437228545762688516221076....
References
- Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
Links
- L. Downey, B. W. Ong, and J. A. Sellers, Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers, Coll. Math. J. 39, no. 8, 2008, 391-394.
- Society for Industrial and Applied Mathematics, Sums of Reciprocals of Polygonal Numbers and a Theorem of Gauss
- Wikipedia, Heptagonal Number
Programs
-
Mathematica
RealDigits[ Pi*Sqrt[25 - 10 Sqrt[5]]/15 + 2Log[5]/3 + (1 + Sqrt[5]) Log[ Sqrt[ 10 - 2 Sqrt[5]]/2]/3 + (1 - Sqrt[5]) Log[ Sqrt[ 10 + 2 Sqrt[5]]/2]/3, 10, 111][[1]] (* or *) RealDigits[ Sum[2/(5 n^2 - 3 n), {n, 1, Infinity}], 10, 111][[1]]
-
PARI
sumnumrat(2/n/(5*n-3),1) \\ Charles R Greathouse IV, Feb 08 2023
Formula
Equals Sum_{n>=1} 2/(5n^2 - 3n).
((5/2)*log(5) - (2*phi-1)*(log(phi) - (Pi/5)*sqrt(7-4*phi)))/3, with the golden section phi := (1 + sqrt(5))/2. This is (5/10)*v_5(2) given from the Koecher reference on p. 192 as ((5/2)*log(5) - sqrt(5)*log((1+sqrt(5))/2) + (1/5)*Pi*sqrt(5*(5-2*sqrt(5))))/3. Compare this with the number given in the Mathematica program. - Wolfdieter Lang, Nov 16 2017
Comments